

Impact of Thrombophilia on Risk of Arterial Ischemic Stroke or Cerebral Sinovenous Thrombosis in Neonates and Children

A Systematic Review and Meta-Analysis of Observational Studies

Gili Kenet, MD*; Lisa K. Lütkhoff*, Manuela Albisetti, MD; Timothy Bernard, MD; Mariana Bonduel, MD; Leonardo Brandao, MD; Stephane Chabrier, MD; Anthony Chan, MD; Gabrielle deVeber, MD, MAS; Barbara Fiedler, MD; Heather J. Fullerton, MD, MAS; Neil A. Goldenberg, MD, PhD; Eric Grabowski, MD; Gudrun Günther, MD; Christine Heller, MD; Susanne Holzhauer, MD; Alfonso Iorio, MD; Janna Journeycake, MD; Ralf Junker, MD; Fenella J. Kirkham, MD; Karin Kurnik, MD; John K. Lynch, MD; Christoph Male, MD; Marilyn Manco-Johnson, MD; Rolf Mesters, MD; Paul Monagle, MD; C. Heleen van Ommen, MD; Leslie Raffini, MD; Kevin Rostásy, MD; Paolo Simioni, MD; Ronald D. Sträter, MD; Guy Young, MD; Ulrike Nowak-Göttl, MD

Background—The aim of this study was to estimate the impact of thrombophilia on risk of first childhood stroke through a meta-analysis of published observational studies.

Methods and Results—A systematic search of electronic databases (Medline via PubMed, EMBASE, OVID, Web of Science, The Cochrane Library) for studies published from 1970 to 2009 was conducted. Data on year of publication, study design, country of origin, number of patients/control subjects, ethnicity, stroke type (arterial ischemic stroke [AIS], cerebral venous sinus thrombosis [CVST]) were abstracted. Publication bias indicator and heterogeneity across studies were evaluated, and summary odds ratios (ORs) and 95% confidence intervals (CIs) were calculated with fixed-effects or random-effects models. Twenty-two of 185 references met inclusion criteria. Thus, 1764 patients (arterial ischemic stroke [AIS], 1526; cerebral sinus venous thrombosis [CVST], 238) and 2799 control subjects (neonate to 18 years of age) were enrolled. No significant heterogeneity was discerned across studies, and no publication bias was detected. A statistically significant association with first stroke was demonstrated for each thrombophilia trait evaluated, with no difference found between AIS and CVST. Summary ORs (fixed-effects model) were as follows: antithrombin deficiency, 7.06 (95% CI, 2.44 to 22.42); protein C deficiency, 8.76 (95% CI, 4.53 to 16.96); protein S deficiency, 3.20 (95% CI, 1.22 to 8.40), factor V G1691A, 3.26 (95% CI, 2.59 to 4.10); factor II G20210A, 2.43 (95% CI, 1.67 to 3.51); MTHFR C677T (AIS), 1.58 (95% CI, 1.20 to 2.08); antiphospholipid antibodies (AIS), 6.95 (95% CI,

Received October 2, 2009; accepted February 10, 2010.

From the Israel National Haemophilia Centre, Sheba Medical Centre, Tel-Hashomer, Israel (G.K.); Department of Pediatric Hematology/Oncology, University Hospital of Münster, Münster, Germany (L.K.L., R.D.S., U.N.-G.); Division of Hematology, University Children's Hospital, Zurich, Switzerland (M.A.); Department of Pediatrics, Hematology/Oncology/BMT, and the Mountain States Regional Hemophilia and Thrombosis Center, University of Colorado, and Children's Hospital, Denver/Aurora, Colo (T.B., N.A.G., M.M.-J.); Servicio de Hematología y Oncología, Hospital de Pediatría "Prof Dr J.P. Garrahan," Buenos Aires, Argentina (M.B.); Hospital for Sick Children, Toronto, Canada (L.B., G.d.V.); Unit of Néonatalogie et Réanimation Pédiatrique, Centre Hospitalier Universitaire, Saint-Etienne, France (S.C.); McMaster University, Hamilton, Canada (A.C.); Department of Pediatric Neurology, University Hospital of Münster, Münster, Germany (B.F.); Department of Neurology and Pediatrics, University of California, San Francisco (H.J.F.); Massachusetts General Hospital, Harvard Medical School, Boston (E.G.); Department of Pediatrics, University Hospital Magdeburg, Magdeburg, Germany (G.G.); Department of Pediatric Hematology/Oncology, University Hospital Frankfurt, Frankfurt, Germany (C.H.); Department of Pediatric Hematology/Oncology, Charité, Berlin, Germany (S.H.); Internal and Vascular Medicine and Hemophilia Centre, University of Perugia, Perugia, Italy (A.I.); Department of Pediatrics, Children's Medical Centre Dallas, University of Texas Southwestern, Medical Center, Dallas (J.J.); Department of Clinical Chemistry, University Hospital of Kiel, Kiel, Germany (R.J.); Neurosciences Unit, Institute of Child Health (University College London), London, UK (F.J.K.); Department of Child Health, Southampton General Hospital, Southampton, UK (F.J.K.); Department of Pediatrics, University Hospital Munich, Munich, Germany (K.K.); Division of Stroke Diagnostics and Therapeutics, National Institutes of Neurological Disorders and Stroke, Bethesda, Md (J.K.L.); Department for Pediatrics, Medical University Vienna, Vienna, Austria (C.M.); Department of Internal Medicine, University Hospital of Münster, Münster, Germany (R.M.); Royal Children's Hospital, Victoria, Australia (P.M.); Department of Pediatric Hematology, Emma Children's Hospital AMC, Amsterdam, the Netherlands (C.H.v.O.); Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia (L.R.); Department of Pediatrics IV, Division of Pediatric Neurology and Inherited Metabolic Disorders, Medical University Innsbruck, Innsbruck, Austria (K.R.); Department of Cardiologic, Thoracic and Vascular Sciences, Second Chair of Internal Medicine, University of Padua, Padua, Italy (P.S.); and Division of Hematology/Oncology, Children's Hospital, Los Angeles, Calif (G.Y.).

*The first 2 authors contributed equally to this work.

The online-only Data Supplement is available with this article at <http://circ.ahajournals.org/cgi/content/full/CIRCULATIONAHA.109.913673/DC1>.

Correspondence to Prof Dr U. Nowak-Göttl, Pediatric Hematology and Oncology, University Hospital of Münster, Albert-Schweitzer-Str 33, D-48149 Münster, Germany. E-mail: leagottl@uni-muenster.de

© 2010 American Heart Association, Inc.

3.67 to 13.14); elevated lipoprotein(a), 6.27 (95% CI, 4.52 to 8.69), and combined thrombophilias, 11.86 (95% CI, 5.93 to 23.73). In the 6 exclusively perinatal AIS studies, summary ORs were as follows: factor V, 3.56 (95% CI, 2.29 to 5.53); and factor II, 2.02 (95% CI, 1.02 to 3.99).

Conclusions—The present meta-analysis indicates that thrombophilias serve as risk factors for incident stroke. However, the impact of thrombophilias on outcome and recurrence risk needs to be further investigated. (*Circulation*. 2010;121:1838–1847)

Key Words: cerebrovascular disorders ■ meta-analysis ■ pediatrics ■ thrombophilia

The incidence of stroke in neonates and children (arterial ischemic stroke [AIS] or cerebral sinus venous thrombosis [CSVT]) is estimated to be between 2.6 and 6.4 per 100 000 per year, reflecting a trend toward a higher frequency in more current literature.^{1–3} Underlying conditions in children with symptomatic cerebrovascular accidents include congenital heart malformations, hemolytic anemias, and collagen vascular diseases, as well as some rare inborn metabolic disorders.⁴ In addition, risk factors include trauma and infectious diseases. Apart from acquired thrombophilic risk factors such as the presence of antiphospholipid antibodies,^{5,6} inherited thrombophilia, particularly antithrombin, protein C, and protein S deficiency, variants of coagulation factor V (G1691A) and factor II (G20210A), and elevated lipoprotein(a), have been found in small case series and case-control studies to be associated with AIS or CSVT in infants and children.^{7–52} Furthermore, an association of the thermolabile *MTHFR* C677T genotype with stroke is controversial in both adults and children.^{53,54} In fact, the increased likelihood of having a blood clot in the vasculature is related to elevated homocysteine levels, and mutations in the *MTHFR* gene only exploit their effect by contributing to the elevated homocysteine plasma level. Because adequate folate levels essentially cancel out the impaired regulation of homocysteine induced by *MTHFR* mutations, not all people will develop high homocysteine levels.^{53–56}

Editorial see p 1795

Clinical Perspective on p 1847

Investigation of the influence of thrombophilia on first-episode stroke has recently begun to adopt the paradigm of pediatric cerebrovascular disease as a multifactorial disorder.⁴ Over the past 3 years, research in pediatric stroke has emphasized not only single gene associations but also heritability of coagulation factors,⁵⁷ candidate gene polymorphisms, and haplotype associations.^{58–60} The results of these individual studies on the risk of stroke onset associated with thrombophilia have been contradictory or inconclusive, mainly because of a lack of statistical power.^{7–61}

Because in the pediatric age group it is unknown whether outcomes in children are affected by thrombophilia, it remains controversial whether stroke onset and outcomes in children with thromboembolism or offspring from thrombosis-prone parents benefit from screening for thrombophilia.^{62–67} The aim of this systematic review and meta-analysis was to determine the impact of thrombophilia on first-episode stroke in children as a prerequisite to the evaluation of primary prevention efforts against stroke in children from families with thrombophilia.

Methods

This systematic review was performed in accordance with the Meta-Analysis of Observational Studies in Epidemiology and the Strengthening the Reporting of Observational Studies in Epidemiology guidelines.^{68,69}

Inclusion/Exclusion Criteria

Published studies of stroke in children <18 years of age from 1970 through June 2009 were evaluated for inclusion if the frequency of ≥ 1 thrombophilia traits was individually investigated in a given stroke cohort (descriptive analysis) and if the frequency of thrombophilia traits was compared between patients with AIS/CSVT and control subjects with no history of stroke in a given study (meta-analysis). Only pediatric stroke cases objectively confirmed by suitable imaging methods were included. In addition, for inclusion, publications must have reported the country of origin, study design, ethnicity, numbers of patients/control subjects, type of stroke, number of individuals tested for thrombophilia, screening tests performed, and laboratory methods (including criteria for normal/abnormal results). Case reports and case series/studies in which <90% of cases were systematically screened for thrombophilia and studies with unclear laboratory/analytic methodology to differentiate between inherited and acquired deficiency states of protein C, protein S, or antithrombin were not included (except in instances when this distinction was subsequently clarified in personal communication with the responsible authors; only cases with inherited deficiency states were included in the analyses).

Search Strategy

A systematic search of publications listed in the electronic databases (Medline via PubMed, EMBASE, OVID, Web of Science, The Cochrane Library) from 1970 to June 2009 was conducted using the following key words in combination as both MeSH terms and text words: (“stroke” or “cerebral vein thrombosis” or “sinovenous thrombosis” or “sinus thrombosis” or “thromboembolism” or “anti-coagulation” or “antithrombotic therapy”) and (“perinatal” or “neonate” or “infant” or “children” or “child” or “childhood” or “adolescents” or “pediatric” or “pediatric” not “adult”) and (“thrombophilia” or “prothrombotic” or “procoagulant” or “protein C” or “protein S” or “antithrombin” or “factor V” or “activated protein C resistance” or “prothrombin” or “factor II” or “lipoprotein(a)” or “antiphospholipid antibodies” or “lupus anticoagulants” or “anticardiolipin”). In addition, reference lists of journal articles identified through the aforementioned search were then manually searched to locate additional studies. The search strategy had no language restrictions. Citations were screened and classified into cohort/case-control, case series, or registry data by 2 independent group members (L.B. and C.H.v.O.).⁷⁰ Those meeting the inclusion criteria were retained. The decision to include or exclude studies was hierarchical, initially based on the study title, followed by the abstract and finally the complete body text. In the event of conflicting opinions, resolution was achieved through discussion.

Data Extraction

To avoid possible double counting of patients included in ≥ 1 report of the same authors/working groups, the patient recruitment periods and catchment areas were evaluated, and authors were contacted for clarification. If the required data could not be located in the

published report, the corresponding author was contacted to provide the missing data of interest. Data extractions were checked for accuracy by multiple authors (L.B., G.G., R.J., S.H., F.J.K., G.K., C.H.V.O., L.R., and U.N.-G.).

Missing Data

Studies in which symptomatic pediatric stroke patients were not screened for thrombophilia or studies in which the thrombophilia screening was <90% of cases or only in sporadic cases were not included in the present meta-analysis. For series in which the percentage of patients screened was not clear from the article, authors were asked for clarification.

Statistical Analyses

Data analyses were performed with STATA version 9 update (College Station, Tex), StatsDirect version 2.6.6 update (Altrincham, UK; www.statsdirect.com), and Comprehensive Meta-Analysis version 2.2.046 (Biostat Inc, Englewood, NJ). Continuous data are presented as median (minimum to maximum) values. For meta-analysis, summary odds ratios (ORs) and 95% confidence intervals (CIs) were calculated from the effect estimates of the individual studies weighted by standard error using a fixed-effects model (weighting each estimate by its standard error via the Mantel and Haenszel method) or a random-effects model (estimating between-study variance in effect measures according to DerSimonian and Laird)⁷¹; the latter approach was used to control for heterogeneity according to Higgins et al.⁷² Data were pooled and ORs were calculated separately for AIS and CSVT because of their different physiologies (AIS, high flow and pulsatile with platelet-rich thrombi; CSVT, low flow and nonpulsatile with fibrin-rich thrombi) and for age groups (perinatal/neonatal versus older children). It was prespecified that we would proceed to calculate an overall pooled OR in case of statistically overlapping results for the previous separate analyses. For both the factor V and factor II variants, AA and GA alleles (ie, homozygosity and heterozygosity for A alleles) were analyzed together and compared with the absence of these genotypes as reference category. A value of $P < 0.05$ was considered statistically significant. In addition, we assessed noncombinability of studies (Cochran Q test) and heterogeneity among studies using I^2 statistics: When $P < 0.05$, noncombinability of studies was considered statistically significant, and when $I^2 > 50\%$, the magnitude of heterogeneity was considered substantial. Funnel (bias assessment) plots of effect size against standard error and a modified linear regression test were used to describe the presence of publication bias.⁷³ Furthermore, we assessed the robustness of our pooled estimates by performing a sensitivity analysis obtained by including/excluding studies with sample size above/below the median sample size and a meta-regression analysis of study effect size versus study sample size.

Of note, subject numbers for the analyses differ in the tables relative to the tables in the online-only Data Supplement because of the reliance on "zero" in the case/control population. The authors had full access to and take full responsibility for the integrity of the data. All authors gave their approval for submission of the final manuscript.

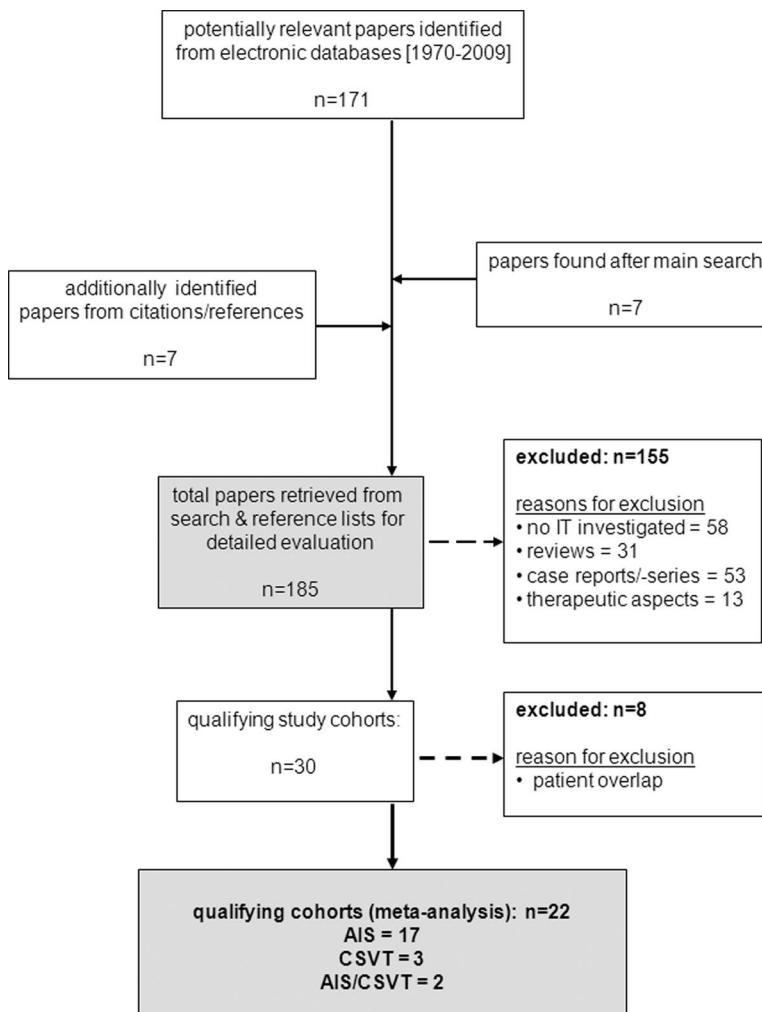
Results

Descriptive Analyses

From 185 potentially relevant citations ascertained from electronic databases and searches of reference lists, 22 cohort studies from 8 countries finally met the inclusion criteria for descriptive analysis (Figure 1 and Table Ia through Ic of the online-only Data Supplement).

Studies investigating thrombophilia at first episode of stroke are shown in Table Ia through Ic of the online-only Data Supplement. Ten of the 22 studies reported inherited deficiency states of protein C, protein S, or antithrombin. In these studies, 1031 patients with a first stroke onset and 1397

control children were investigated (Table Ia of the online-only Data Supplement).


Beginning in 1998, the factor V and factor II variants were systematically investigated in childhood stroke (22 studies; Table Ib of the online-only Data Supplement). In addition, studies reporting data on antiphospholipid antibodies/lupus anticoagulants (8 studies; 930 children versus 1096 control subjects) and combined thrombophilias (12 studies; 926 children versus 1416 control subjects) are summarized in Table Ic of the online-only Data Supplement; here, we have added data on elevated lipoprotein(a), a thrombogenic parameter that was investigated exclusively in a controlled design in German children with stroke.

Meta-Analyses

In 22 of 185 studies, eligible data on first-episode stroke children and population-based control subjects were reported. Tables 1 (AIS), 2 (CSVT), and 3 (AIS and CSVT) summarize the presence of antiphospholipid antibodies/lupus anticoagulants and the genetic traits investigated, the number of studies and patients included in the meta-analysis, and summary ORs and 95% CIs under a fixed-effects or random-effects model. In addition, results of testing for heterogeneity and noncombinability are shown. Publication bias also was calculated when >4 studies were pooled. No significant heterogeneity, noncombinability, or publication bias was discerned across studies. Borderline-significant heterogeneity was found for protein S (first AIS) and combination of genetic traits (first CSVT). Random-effects estimates were provided for those sets of studies. Age group (perinatal/neonatal versus older children) did not significantly affect the OR, so only the pooled analysis is reported.

A statistically significant association with stroke was demonstrated for each thrombophilia trait evaluated in the entire patient cohort (and for combined genetic traits), with summary ORs ranging from 1.58 (95% CI, 1.20 to 2.08) for the *MTHFR T677T* genotype (available for patients with AIS only) to 9.31 (95% CI, 4.81 to 18.02) for protein C deficiency. For perinatal AIS, 6 studies were available. Summary ORs were as follows: factor V G1691A, 3.56 (95% CI, 2.29 to 5.53); and factor II G20210A, 2.02 (95% CI, 1.02 to 3.99).

Forest plots under fixed-effects models show that pediatric carriers of the factor V G1691A mutation (Figure 2A), the factor II G20210A variant (Figure 2B), and acquired antiphospholipid antibodies (Figure 2C, AIS only) had an increased risk of developing a first symptomatic stroke. As shown exemplarily for factor V G1691A carriers, the cumulative meta-analysis did not show any significant change over time of the mean risk estimate (Figure 3). Forest plots (random-effects model) for perinatal/neonatal AIS/CSVT^{5,13,27,30,35,58} are shown for factor V G1691A and factor II G20210A in Figure Ia and Ib of the online-only Data Supplement. Funnel plots (bias assessment) of effect size against standard error were explored for each parameter investigated and were broadly symmetrical, which was consistent with the conclusion that there was no major publication bias (As an example, data of bias assessment plots are

Figure 1. Flow chart showing the results of the search strategy and reasons for exclusion.

shown for protein C deficiency in Figure IIa of the online-only Data Supplement and the Factor V mutation in Figure IIb of the online-only Data Supplement). The absence of major publication bias was also underlined by the results of the linear regression method according to Harbord et al.⁷³

Sensitivity Analyses

The median sample size for the set of included studies was 42. We thus assessed the variation in OR estimates obtained by including in the analysis only the studies with more or less than 42 cases. Because 42 might generally be considered a

Table 1. Summary ORs (95% CIs; Meta-Analysis) Including Testing for Heterogeneity (I^2), Noncombinability, and Publication Bias for Thrombophilic Risk Factors Associated With a First AIS Onset in Children

Thrombophilic Traits (No. of Studies)	Patients/Control Subjects, n	OR/95% CI (Fixed-Effects or Random-Effects Model)	I^2 , %; P	Bias Indicator (Harbord et al ⁷³), P
Acquired risk factors				
APS/LA (8)	930/1194	6.95/3.67–13.14 (F)	0; 0.82	0.86
Genetic risk factors				
Antithrombin deficiency (4)	639/684	3.29/0.70–15.48 (F)	15; 0.31	NC
Protein C deficiency (8)	844/1207	11.0/5.13–23.59 (F)	0; 0.96	0.60
Protein S deficiency (4)	574/572	1.49/0.32–6.92 (R)	61; 0.05	NC
Lipoprotein(a) (4)	616/578	6.53/4.46–9.55 (F)	0; 0.85	NC
Factor V G1691A (17)	1014/2581	3.70/2.82–4.85 (F)	0; 0.67	0.22
Factor II G20210A (13)	1059/2278	2.60/1.66–4.08 (F)	0; 0.46	0.78
MTHFR TT* (11)	777/1715	1.58/1.20–2.08 (F)	3.5; 0.40	0.42
≥2 Genetic traits (9)	701/1265	18.75/6.49–54.14 (F)	0; 0.59	0.61

*T677T. APS/LA indicates antiphospholipid antibodies/lupus anticoagulants; F, fixed-effects model; R, random-effects model; and NC, not calculated.

Table 2. Summary ORs (95% CIs; Meta-Analysis) Including Testing for Heterogeneity (I^2), Noncombinability, and Publication Bias for Thrombophilic Risk Factors Associated With a First CSVT Onset in Children

Genetic Traits (No. of Studies)	Patients/Control Subjects, n	OR/95% CI (Fixed-Effects or Random-Effects Model)	I^2 , %; P	Bias Indicator (Harbord et al ⁷³ , P)
Genetic risk factors				
Antithrombin deficiency (2)	187/469	18.41/3.25–104.29 (F)	19; 0.27	NC
Protein C deficiency (2)	1031/1468	6.30/1.56–25.40 (F)	0; 0.90	NC
Protein S deficiency (2)	187/369	5.27/1.53–18.21 (F)	0; 0.72	NC
Factor V G1691A (5)	1625/2842	2.74/1.73–4.34 (F)	0; 0.62	0.68
Factor II G20210A (5)	1409/2613	1.95/0.93–4.07 (F)	0; 0.82	0.79
≥2 Genetic traits (3)	926/1720	6.12/0.87–43.07 (R)	63.7; 0.25	NC

F indicates fixed-effects model; R, random-effects model; and NC, not calculated.

small sample size, we also assessed the effect of including only studies with more or less than 100 cases. The results showed that the OR estimates for AIS/CSVT are robust (the changes are not significant) for any thrombophilia, factor II mutation, factor V G1691A, protein C, and protein S deficiencies. The OR for antiphospholipid antibodies/lupus anticoagulants was found to be slightly higher for studies with sample size >100 cases (7.17; 95% CI, 2.24 to 23.00). The OR for antithrombin was found to be lower in larger studies (OR for AIS and CSVT, 4.39; 95% CI, 1.11 to 17.34; OR for AIS, 2.69; 95% CI, 0.45 to 16.22; OR for CSVT, 8.89; 95% CI, 1.02 to 76.82). No significant effect of study sample size (cases and controls) was found in a meta-regression analysis for any of the thrombophilia markers.

Discussion

Stroke events, including AIS and CSVT, are far less common in the pediatric population than in adults and are often associated with underlying medical conditions.^{3,4} Bearing in mind that not all children with these underlying medical conditions will develop stroke, it appears that genetic risk factors contribute to the origin of first-episode childhood stroke. There have been recent systematic reviews on the role of thrombophilia in children with acute lymphoblastic leukemia and venous thrombosis.^{74,75} However, to the best of our knowledge and apart from data reported by Haywood and coworkers⁷⁶ in 2005, this is one of the first comprehensive

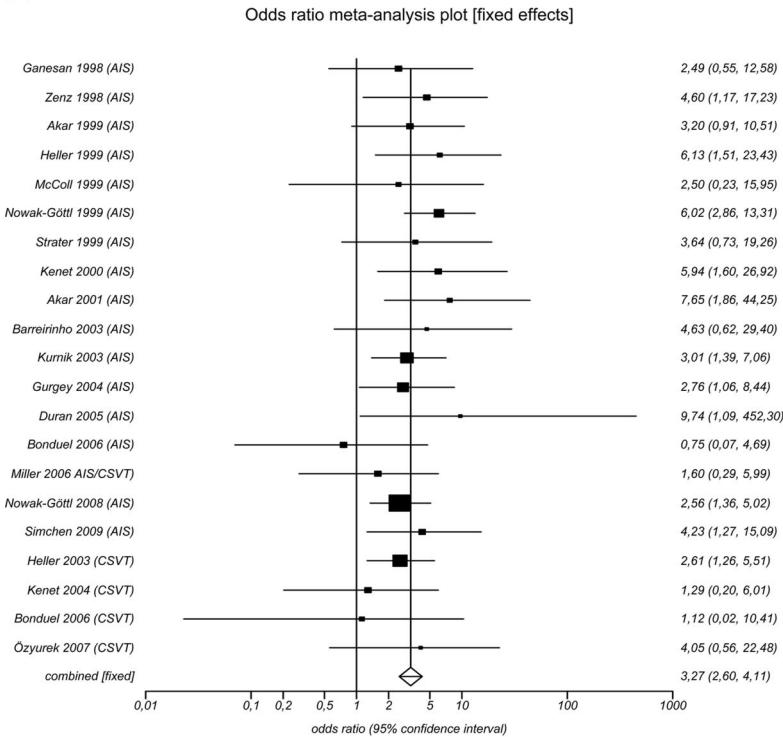
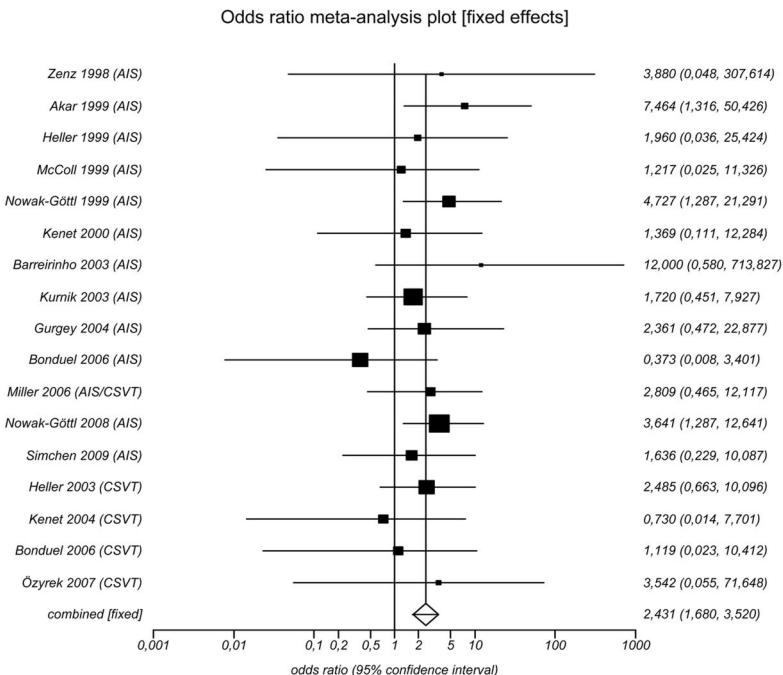

meta-analyses on observational studies investigating the association of genetic and acquired thrombophilia traits with stroke in children. In contrast to Haywood and coworkers, we have included in the statistical model only those studies that focused solely on childhood stroke (ie, exclusive of young adults¹⁴) and have referred to hospital- or population-based pediatric control subjects. In addition, cohorts reporting acquired deficiency states of antithrombin, protein C, or protein S were not ascertained.³³ Similar to data from a recent systematic review and meta-analyses in children with venous thrombosis,⁷⁵ each of the traits investigated shows a significant association with first onset of pediatric stroke. As shown exemplarily for factor V carriers, the results of cumulative meta-analysis showed that statistical significance was reached very early, indicating that a meta-analysis performed 5 to 10 years ago would have anticipated the results of all of the forthcoming studies for the association of factor V G1691A with AIS; similarly, cumulative analysis shows the robustness over time of the less precise estimates for CSVT. It is also noteworthy that the overall mean estimate of the risk associated with factor V G1691A increased for a while after the pioneer studies in the field and finally returned to a value very close to the initial value, as often happens when a set of confirmatory studies arise in a given field. This phenomenon is often cited to support the hypothesis that negative (or, in this case, less optimistic) studies need longer to get published. The highest ORs were found for combined genetic traits,

Table 3. Summary ORs (95% CIs; Meta-Analysis) Including Testing for Heterogeneity (I^2), Noncombinability, and Publication Bias for Thrombophilic Risk Factors Associated With a First AIS/CSVT Onset in Children


Genetic Traits (No. of Studies)	Patients/Control Subjects, n	OR/95% CI (Fixed-Effects or Random-Effects Model)	I^2 , %; P	Bias Indicator (Harbord et al ⁷³ , P)
Genetic risk factors				
Antithrombin deficiency (6)	826/1153	7.06/2.44–22.42 (F)	27; 0.23	0.53
Protein C deficiency (10)	1031/1468	9.31/4.81–18.02 (F)	0; 0.94	0.76
Protein S deficiency (6)	761/941	3.20/1.22–8.40 (F)	47; 0.09	0.57
Lipoprotein(a) (5)	722/727	6.27/4.52–8.69 (F)	0.0; 0.91	0.64
Factor V G1691A (21)	1625/2842	3.26/2.59–4.10 (F)	0; 0.67	0.42
Factor II G20210A (17)	1409/2613	2.43/1.67–3.51 (F)	0; 0.76	0.86
≥2 Genetic traits (12)	926/1720	11.86/5.93–23.73 (F)	19; 0.25	0.52

F indicates fixed-effects model.

A Factor V G1691A in children with AIS or CSVT onset

B Factor II G20210A in children with AIS or CSVT onset

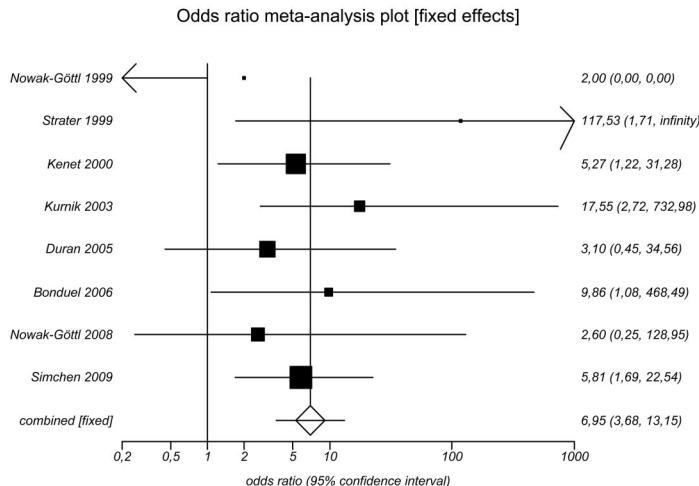
Figure 2. A, Forest plot shows ORs and 95% CIs for observational studies investigating the influence of the factor V G1691A mutation on the onset of symptomatic AIS/CSVT in children. The study author and year of publication are indicated on the y axis. The box for each study is proportional to the inverse of variance; horizontal lines show the 95% CIs of the ORs. The pooled estimate is based on a fixed-effects model shown by a vertical line and diamond (95% CI). Studies are in descending order by year of publication. Studies with patients/control subjects counted as “zero” are not depicted. B, Forest plot shows ORs and 95% CIs for observational studies investigating the influence of factor II G20210A variant on the onset of symptomatic AIS/CSVT in children. The study author and year of publication are indicated on the y axis. The box for each study is proportional to the inverse of variance; horizontal lines show the 95% CIs of the ORs. The pooled estimate is based on a fixed-effects model shown by a vertical line and diamond (95% CI). Studies are in descending order by year of publication. Studies with patients/control subjects counted as “zero” are not depicted. C, Forest plot shows ORs and 95% CIs for observational studies investigating the influence of acquired antiphospholipid antibodies/lupus anticoagulants on the onset of symptomatic AIS in children. The study author and year of publication are indicated on the y axis. The box for each study is proportional to the inverse of variance; horizontal lines show the 95% CIs of the ORs. The pooled estimate is based on a fixed-effects model shown by a vertical line and diamond (95% CI). Studies are in descending order by year of publication. Studies with patients/control subjects counted as “zero” are not depicted.

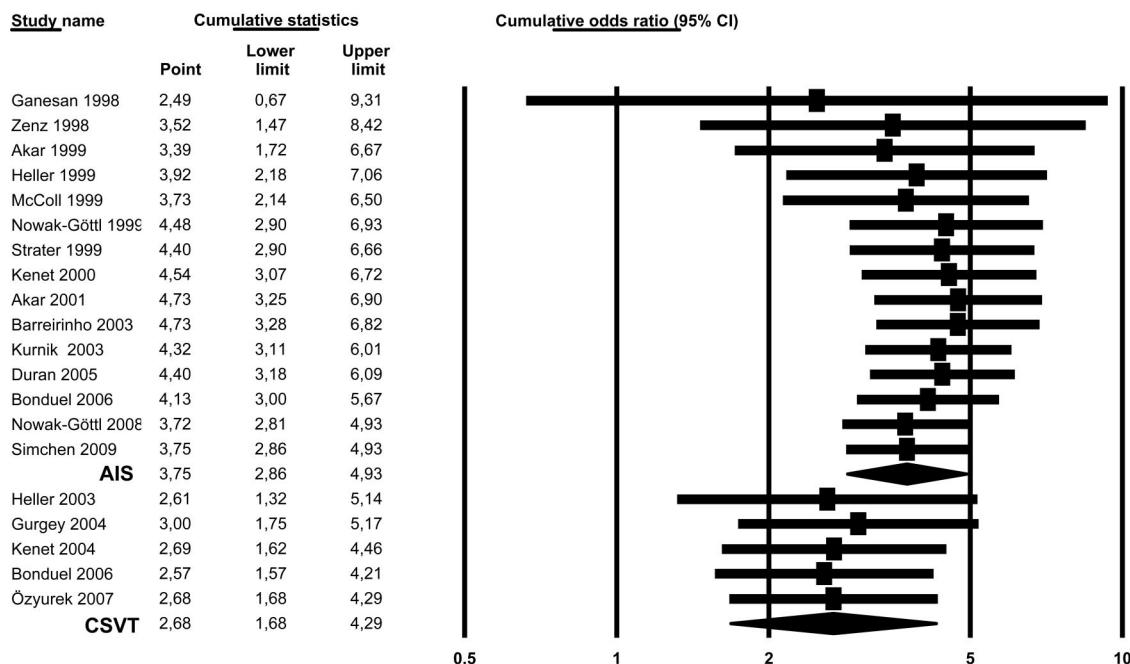
deficiency of protein C, and the presence of antiphospholipid antibodies. In addition, elevated lipoprotein(a), a low-density lipoprotein particle linked to apolipoprotein(a), showed an increased OR of 6.5, a finding that is in line with recent meta-analyses in adult patients with arterial cardiovascular events.^{77,78} Furthermore, evidence is accumulating that elevated lipoprotein(a) resulting in

inhibition of plasminogen activation is also a risk factor of venous thrombosis.^{79,80}

Perinatal AIS, defined as infarction occurring between 28 weeks' gestation and 28 days of postnatal age,⁸¹ is a unique entity occurring in ≈1 in 4000 to 5000 live births.^{82,83} The pathophysiology of perinatal stroke is complex and in many cases is likely to be multifactorial. It is now recognized that

C Antiphospholipid antibodies/lupus anticoagulants in children with AIS onset




Figure 2 (Continued).

risk factors may relate to both maternal and placental problems and to fetal and neonatal disorders.^{35,84–86} The role of genetic and acquired thrombophilia in the pathogenesis of perinatal AIS is controversial and not completely understood. Analysis of our results shows that for studies evaluating perinatal stroke only, thrombophilia was still a risk factor. There is a paucity of eligible studies with control subjects on neonatal perinatal AIS and CSVT, and the issue deserves further attention.

The present meta-analysis has several limitations. First, the included studies were conducted over different time periods; therefore, it is possible that diagnosis and treatment modalities and referral patterns may have changed over time.

Second, most of the studies included in our meta-analysis were undertaken in white children; thus, it is unknown whether our findings can be extrapolated to other ethnic groups. It is well known that the allele frequencies for the factor V G1691A or factor II G20210A variants differ among various ethnic groups^{87–91}; for example, the factor V G1691A and factor II G20210A polymorphisms are rarely observed in blacks and Asians. In children with first-episode stroke, the homozygous *MTHFR* C677T mutation has been shown to independently increase the risk of stroke.^{53,55} However, because homocysteine was not always studied, the potential risks associated with elevated homocysteine could not be determined; this is another limitation of the present meta-

Factor V G1691A

Figure 3. Forest plot shows cumulative ORs and 95% CIs for observational studies investigating the influence of the factor V G1691A mutation on the onset of symptomatic AIS and CSVT in children. The cumulative estimate is based on a fixed-effects model. Studies are in descending order by year of publication.

analysis. A clear warning has to be raised here to clinically test the patients for homocysteinemia but not for *MTHFR* mutation because it was clearly shown in adult patients that the former and not the latter identifies people at increased thrombotic risk.⁵⁶ A fourth limitation is the possible presence of publication bias. Although formal testing did not show a publication bias, it cannot be completely ruled out, considering the rarity of the disease and the small number of studies available in the field of pediatric stroke. In the context of publication bias, we must mention here that data on lipoprotein(a) and AIS/CSVT are based on 4 different population-based studies, all of which share authorship with the senior author of this meta-analysis, so the data interpretation is restricted to the populations investigated. As noted above, newborns are particularly underrepresented in the present analysis. Thrombophilia screening and its interpretation are difficult in neonates and may therefore be postponed to later ages by the treating physicians with the increasing risk of patients being lost to follow-up. As a consequence, data obtained from this meta-analysis have to be interpreted with caution, especially for infants within the first year after birth. A further limitation is the missing data between thrombophilia and recurrent stroke. So far, only 4 cohort studies are available on this topic.^{19,27,50,92} In line with recurrence in children with venous thrombosis, Ganesan and coworkers⁹² found in 2006 that a positive association between thrombophilia and recurrent AIS was detected solely in primarily "healthy" stroke children with a significantly increased hazard ratio for the prothrombin G20210A variant (hazard ratio/OR, 7.9; 95% CI, 1.8 to 34.9) during the patient follow-up.

These limitations notwithstanding, the findings of the present meta-analysis indicate that thrombophilias serve as risk factors for first stroke. However, the impact of thrombophilias on outcome and recurrence risk needs to be further investigated. The clinical value, economic effectiveness, and psychological implications of thrombophilia testing in this setting have to be further elucidated before proceeding to large-scale clinical application.

Acknowledgments

We thank Frances Cowan (Department of Pediatrics, Hammersmith Hospital, Imperial College London, UK), Meredith Golomb (Department of Neurology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis), and Vijeja Ganesan (Neurosciences Unit, Institute of Child Health, University College, London, UK) for helpful discussions and manuscript editing. In addition, we thank Klaus Berger for his help in epidemiological discussions and Kathrin Gordon, Sarah Nixdorf, and Doris Kunkel (University Hospital of Münster, Germany) for technical support.

Sources of Funding

The study was supported by grants from the Förderverein "Schlaganfall und Thrombosen im Kindesalter e.V.," Deutsche Schlaganfall-Hilfe, and Interdisziplinäres Zentrum für Klinische Forschung (CRA01-09), University of Münster. These study supporters had no role in study design, data collection, data analysis, data interpretation, or writing of the report.

Disclosures

None.

References

1. Lynch JK, Hirtz DG, deVeber G, Nelson K. Report of the National Institute of Neurological Disorders and Stroke workshop on perinatal and childhood stroke. *Pediatrics*. 2002;109:116-123.
2. deVeber G, Andrew M, Adams C, Bjornson B, Booth F, Buckley DJ, Camfield CS, David M, Humphreys P, Langevin P, MacDonald AE, Gillett J, Meaney B, Shevell M, Sinclair DB, Yager J, for the Canadian Pediatric Ischemic Stroke Study Group. Cerebral sinovenous thrombosis in children. *N Engl J Med*. 2001;345:417-423.
3. Kleindorfer D, Khouri J, Kissela B, Alwell K, Woo D, Miller R, Schneider A, Moomaw C, Broderick JP. Temporal trends in the incidence and case fatality of stroke in children and adolescents. *J Child Neurol*. 2006;21:415-418.
4. Lanthier S, Carmant L, David M, Larbrisseau A, deVeber G. Stroke in children: the coexistence of multiple risk factors predicts poor outcome. *Neurology*. 2000;54:371-378.
5. Kenet G, Sadetzki S, Murad H, Martinowitz U, Rosenberg N, Gitel S, Rechavi G, Inbal A. Factor V Leiden and antiphospholipid antibodies are significant risk factors for ischemic stroke in children. *Stroke*. 2000;31:1283-1288.
6. Berkun Y, Padeh S, Barash J, Uziel Y, Harel L, Mukamel M, Revel-Vilk S, Kenet G. Antiphospholipid syndrome and recurrent thrombosis in children. *Arthritis Rheum*. 2006;55:850-855.
7. Uysal S, Anlar B, Altay C, Kirazli S. Role of protein C in childhood cerebrovascular occlusive accidents. *Eur J Pediatr*. 1989;149:216-218.
8. Kennedy CR, Warner G, Kai M, Chisholm M. Protein C deficiency and stroke in early life. *Dev Med Child Neurol*. 1995;37:723-730.
9. Riiponen RS, Vahtera EM, Kekomäki RM. Physiological anticoagulants and activated protein C resistance in childhood stroke. *Acta Paediatr*. 1996;85:242-244.
10. Koh S, Chen LS. Protein C and S deficiency in children with ischemic cerebrovascular accident. *Pediatr Neurol*. 1997;17:319-321.
11. Ganesan V, McShane MA, Liesner R, Cookson J, Hann I, Kirkham FJ. Inherited prothrombotic states and ischaemic stroke in childhood. *J Neurol Neurosurg Psychiatry*. 1998;65:508-511.
12. Becker S, Heller C, Gropp F, Scharrer I, Kreuz W. Thrombophilic disorders in children with cerebral infarction. *Lancet*. 1998;352:1756-1757.
13. Zenz W, Bodó Z, Plotho J, Streif W, Male C, Bernert G, Rauter L, Ebetsberger G, Kaltenbrunner K, Kurnik P, Lischka A, Paky F, Ploier R, Höfler G, Mannhalter C, Muntean W. Factor V Leiden and prothrombin gene G 20210 A variant in children with ischemic stroke. *Thromb Haemost*. 1998;80:763-766.
14. Mohanty S, Saxena R, Behari M. Activated protein C (APC) resistance in young stroke patients. *Thromb Haemost*. 1999;81:465-466.
15. Akar N, Akar E, Deda G, Sipahi T, Orsal A. Factor V1691 G-A, prothrombin 20210 G-A, and methylenetetrahydrofolate reductase 677 C-T variants in Turkish children with cerebral infarct. *J Child Neurol*. 1999;14:749-751.
16. Heller C, Becker S, Scharrer I, Kreuz W. Prothrombotic risk factors in childhood stroke and venous thrombosis. *Eur J Pediatr*. 1999;158(suppl 3):S117-S121.
17. McColl MD, Chalmers EA, Thomas A, Sproul A, Healey C, Rafferty I, McWilliam R, Eunson P. Factor V Leiden, prothrombin 20210G-A and the *MTHFR* C677T mutations in childhood stroke. *Thromb Haemost*. 1999;81:690-694.
18. Nowak-Götz U, Sträter R, Heinecke A, Junker R, Koch HG, Schuierer G, von Eckardstein A. Lipoprotein (a) and genetic polymorphisms of clotting factor V, prothrombin, and methylenetetrahydrofolate reductase are risk factors of spontaneous ischemic stroke in childhood. *Blood*. 1999;94:3678-3682.
19. Sträter R, Vielhaber H, Kassenböhmer R, von Kries R, Göbel U, Nowak-Götz U. Genetic risk factors of thrombophilia in ischaemic childhood stroke of cardiac origin: a prospective ESPED survey. *Eur J Pediatr*. 1999;158(suppl 3):S122-S125.
20. Günther G, Junker R, Sträter R, Schobess R, Kurnik K, Heller C, Kosch A, Nowak-Götz U, for the Childhood Stroke Study Group. Symptomatic ischemic stroke in full-term neonates: role of acquired and genetic prothrombotic risk factors. *Stroke*. 2000;31:2437-2441.
21. Cardo E, Monrós E, Colomé C, Artuch R, Campistol J, Pineda M, Vilaseca MA. Children with stroke: polymorphism of the *MTHFR* gene, mild hyperhomocysteinemia, and vitamin status. *J Child Neurol*. 2000;15:295-298.

22. Akar N, Akar E, Ozel D, Deda G, Sipahi T. Common mutations at the homocysteine metabolism pathway and pediatric stroke. *Thromb Res*. 2001;102:115–120.
23. Mercuri E, Cowan F, Gupte G, Manning R, Laffan M, Rutherford M, Edwards AD, Dubowitz L, Roberts I. Prothrombotic disorders and abnormal neurodevelopmental outcome in infants with neonatal cerebral infarction. *Pediatrics*. 2001;107:1400–1404.
24. Barreirinho S, Ferro A, Santos M, Costa E, Pinto-Basto J, Sousa A, Sequeiros J, Maciel P, Barbot C, Barbot J. Inherited and acquired risk factors and their combined effects in pediatric stroke. *Pediatr Neurol*. 2003;28:134–138.
25. Bonduel M, Sciuccati G, Hepner M, Pieroni G, Torres AF, Mardaraz C, Frontho JP. Factor V Leiden and prothrombin gene G20210A mutation in children with cerebral thromboembolism. *Am J Hematol*. 2003;73:81–86.
26. Ganesan V, Prengler M, McShane MA, Wade AM, Kirkham FJ. Investigation of risk factors in children with arterial ischemic stroke. *Ann Neurol*. 2003;53:167–173.
27. Kurnik K, Kosch A, Sträter R, Schobess R, Heller C, Nowak-Göttl U. Recurrent thromboembolism in infants and children suffering from symptomatic neonatal arterial stroke: a prospective follow-up study. *Stroke*. 2003;34:2887–2892.
28. Barnes C, Newall F, Harvey AS, Monagle P. Thrombophilia interpretation in childhood stroke: a cautionary tale. *J Child Neurol*. 2004;19:218–219.
29. Chung B, Wong V. Pediatric stroke among Hong Kong Chinese subjects. *Pediatrics*. 2004;114:e206–e212.
30. Debus OM, Kosch A, Sträter R, Rossi R, Nowak-Göttl U. The factor V G1691A mutation is a risk for porencephaly: a case-control study. *Ann Neurol*. 2004;56:287–290.
31. Duran R, Biner B, Demir M, Celik C, Karaslioglu S. Factor V Leiden mutation and other thrombophilia markers in childhood ischemic stroke. *Clin Appl Thromb Hemost*. 2005;11:83–88.
32. Lynch JK, Han CJ, Nee LE, Nelson KB. Prothrombotic factors in children with stroke or porencephaly. *Pediatrics*. 2005;116:447–453.
33. Bonduel M, Sciuccati G, Hepner M, Pieroni G, Torres AF, Frontho JP, Tenenbaum S. Arterial ischemic stroke and cerebral venous thrombosis in children: a 12-year Argentinean registry. *Acta Haematol*. 2006;115:180–185.
34. Komitopoulou A, Platokouki H, Kapsimali Z, Pergantou H, Adamtziki E, Aronis S. Mutations and polymorphisms in genes affecting hemostasis proteins and homocysteine metabolism in children with arterial ischemic stroke. *Cerebrovasc Dis*. 2006;22:13–20.
35. Simchen MJ, Goldstein G, Lubetsky A, Strauss T, Schiff E, Kenet G. Factor V Leiden and antiphospholipid antibodies in either mothers or infants increase the risk for perinatal arterial ischemic stroke. *Stroke*. 2009;40:65–70.
36. Del Balzo F, Spalice A, Ruggieri M, Greco F, Properzi E, Iannetti P. Stroke in children: inherited and acquired factors and age-related variations in the presentation of 48 paediatric patients. *Acta Paediatr*. 2009;98:1130–1136.
37. deVeber G, Monagle P, Chan A, MacGregor D, Curtis R, Lee S, Vegh P, Adams M, Marzinotto V, Leaker M, Massicotte P, Lillicrap D, Andrew M. Prothrombotic disorders in infants and children with cerebral thromboembolism. *Arch Neurol*. 1998;55:1539–1543.
38. Vielhaber H, Ehrenforth S, Koch HG, Scharrer I, van der Werf N, Nowak-Göttl U. Cerebral venous thrombosis in infancy and childhood: role of genetic and acquired risk factors of thrombophilia. *Eur J Pediatr*. 1998;157:555–560.
39. Bonduel M, Sciuccati G, Hepner M, Torres AF, Pieroni G, Frontho JP. Prothrombotic disorders in children with arterial ischemic stroke and sinovenous thrombosis. *Arch Neurol*. 1999;56:967–971.
40. Ehrenforth S, Junker R, Koch HG, Kreuz W, Münchow N, Scharrer I, Nowak-Göttl U. Multicentre evaluation of combined prothrombotic defects associated with thrombophilia in childhood: Childhood Thrombophilia Study Group. *Eur J Pediatr*. 1999;158:S97–S104.
41. Junker R, Koch HG, Auburger K, Münchow N, Ehrenforth S, Nowak-Göttl U. Prothrombin G20210A gene mutation and further prothrombotic risk factors in childhood thrombophilia. *Arterioscler Thromb Vasc Biol*. 1999;19:2568–2572.
42. Nowak-Göttl U, Junker R, Hartmeier M, Koch HG, Münchow N, Assmann G, von Eckardstein A. Increased lipoprotein(a) is an important risk factor for venous thromboembolism in childhood. *Circulation*. 1999a;100:743–748.
43. Bonduel M, Hepner M, Sciuccati G, Pieroni G, Feliú-Torres A, Mardaraz C, Frontho JP. Factor V Leiden and prothrombin gene G20210A mutation in children with venous thromboembolism. *Thromb Haemost*. 2002;87:972–977.
44. Heller C, Heinecke A, Junker R, Knöfler R, Kosch A, Kurnik K, Schobess R, von Eckardstein A, Sträter R, Zieger B, Nowak-Göttl U, for the Childhood Stroke Study Group. Cerebral venous thrombosis in children: a multifactorial origin. *Circulation*. 2003;108:1362–1367.
45. Young G, Manco-Johnson M, Gill JC, Dimichele DM, Tarantino MD, Abshire T, Nugent DJ. Clinical manifestations of the prothrombin G20210A mutation in children: a pediatric coagulation consortium study. *J Thromb Haemost*. 2003;1:958–962.
46. Gürgey A, Balta G, Gumruk F, Altay C. Analysis of some clinical and laboratory aspects of adolescent patients with thrombosis. *Blood Coagul Fibrinolysis*. 2004;15:657–662.
47. Kenet G, Waldman D, Lubetsky A, Kornbrut N, Khalil A, Koren A, Wolach B, Fattal A, Kapelushnik J, Tamary H, Yacobovitch J, Raveh E, Revel-Vilk S, Toren A, Brenner B. Paediatric cerebral sinus vein thrombosis: a multi-center, case-controlled study. *Thromb Haemost*. 2004;92:713–718.
48. Sébire G, Tabarki B, Saunders DE, Leroy I, Liesner R, Saint-Martin C, Husson B, Williams AN, Wade A, Kirkham FJ. Cerebral venous sinus thrombosis in children: risk factors, presentation, diagnosis and outcome. *Brain*. 2005;128:477–489.
49. Komitopoulou A, Platokouki H, Kapsimali Z, Moschovi M, Kattamis A. Mutations and polymorphisms in genes affecting haemostasis components in children with thromboembolic events. *Pathophysiol Haemost Thromb*. 2006;35:392–397.
50. Kenet G, Kirkham F, Niederstadt T, Heinecke A, Saunders D, Stoll M, Brenner B, Bidlingmaier C, Heller C, Knöfler R, Schobess R, Zieger B, Sébire G, Nowak-Göttl U, for the European Thromboses Study Group. Risk factors for recurrent venous thromboembolism in the European collaborative paediatric database on cerebral venous thrombosis: a multicentre cohort study. *Lancet Neurol*. 2007;6:595–603.
51. Gentilomo C, Franzoi M, Laverda AM, Suppiej A, Battistella PA, Simioni P. Cerebral sinovenous thrombosis in children: thrombophilia and clinical outcome. *Thromb Res*. 2008;121:589–591.
52. Ozyurek E, Balta G, Degerliyurt A, Parlak H, Aysun S, Gürgey A. Significance of factor V, prothrombin, MTHFR, and PAI-1 genotypes in childhood cerebral thrombosis. *Clin Appl Thromb Hemost*. 2007;13:154–160.
53. Prengler M, Sturt N, Krywawych S, Surtees R, Liesner R, Kirkham F. Homozygous thermolabile variant of the methylenetetrahydrofolate reductase gene: a potential risk factor for hyperhomocysteinaemia, CVD, and stroke in childhood. *Dev Med Child Neurol*. 2001;43:220–225.
54. Kosch A, Koch HG, Heinecke A, Kurnik K, Heller C, Nowak-Göttl U. Increased fasting total homocysteine plasma levels as a risk factor for thromboembolism in children. *Thromb Haemost*. 2004;91:308–314.
55. van Beunum IM, Smeitink JA, den Heijer M, te Poele Pothoff MT, Blom HJ. Hyperhomocysteinaemia: a risk factor for ischemic stroke in children. *Circulation*. 1999;77:2070–2072.
56. Varga EA, Sturm AC, Misita CP, Moll S. Homocysteine and MTHFR mutations. *Circulation*. 2005;111:e289–e293.
57. Nowak-Göttl U, Langer C, Bergs S, Thedieck S, Sträter R, Stoll M. Genetics of hemostasis: differential effects of heritability and household components influencing lipid concentrations and clotting factor levels in 282 pediatric stroke families. *Environ Health Perspect*. 2008;116:839–843.
58. Miller SP, Wu YW, Lee J, Lammer EJ, Iovannisci DM, Glidden DV, Bonifacio SL, Collins A, Shaw GM, Barkovich AJ, Ferriero DM. Candidate gene polymorphisms do not differ between newborns with stroke and normal controls. *Stroke*. 2006;37:2678–2683.
59. Nowak-Göttl U, Fröhlich B, Thedieck S, Huge A, Stoll M. Association of the protein Z ATG haplotype with symptomatic nonvascular stroke or thromboembolism in white children: a family-based cohort study. *Blood*. 2009;113:2336–2341.
60. Nowak-Göttl U, Weiler H, Hernandez I, Thedieck S, Seehafer T, Schulte T, Stoll M. Fibrinogen alpha and gamma genes and factor V Leiden in children with thromboembolism: results from 2 family-based association studies. *Blood*. 2009;114:1947–1953.
61. Tormene D, Gavasso S, Rossetto V, Simioni P. Thrombosis and thrombophilia in children: a systematic review. *Semin Thromb Hemost*. 2006;32:724–728.

62. Tormene D, Simioni P, Prandoni P, Franz F, Zerbinati P, Tognin G, Girolami A. The incidence of venous thromboembolism in thrombophilic children: a prospective cohort study. *Blood*. 2002;100:2403–2405.
63. Sass AE, Neufeld EJ. Risk factors for thromboembolism teens: when should I test? *Cur Opin Pediatr*. 2002;14:370–378.
64. Williams MD, Chalmers E, Gibson BES. Guideline: the investigation and management of neonatal haemostasis and thrombosis. *Br J Haematol*. 2002;119:295–309.
65. Ruud E, Holmström H, Brosstad F, Wesenberg F. Diagnostic value of family histories of thrombosis to identify children with thrombophilia. *Pediatr Hematol Oncol*. 2005;22:453–462.
66. Johal SC, Garg BP, Heiny ME, LS, Saha C, Walsh LE, Golomb MR. Family history is a poor screen for prothrombotic genes in children with stroke. *J Pediatr*. 2006;148:68–71.
67. Dietrich JE, Hertweck SP, Perlman SE. Efficacy of family history in determining thrombophilia risk. *J Pediatr Adolesc Gynecol*. 2007;20:221–224.
68. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, Moher D, Becker BJ, Sipe TA, Thacker SB. Meta-analysis of observational studies in epidemiology: a proposal for reporting. *JAMA*. 2000;283:2008–2012.
69. Vandebroucke JP, von Elm E, Altman DG, Gøtzsche PC, Mulrow CD, Pocock SJ, Poole C, Schlesselman JJ, Egger M, for the STROBE Initiative. Strengthening the reporting of observational studies in epidemiology (STROBE): explanation and elaboration. *Ann Intern Med*. 2007;147:W163–W194.
70. Mayer D. *Essential Evidence-Based Medicine*. Boston, Mass: Cambridge University Press; 2004:347–360.
71. Kirkwood BR, Sterne JAC. *Medical Statistics*. 2nd ed. Boston, Mass: Blackwell Science; 2003:180–387.
72. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analysis. *BMJ*. 2003;327:557–560.
73. Harbord RM, Egger M, Sterne JAC. A modified test for small-study effects in meta-analyses of controlled trials with binary endpoints. *Stat Med*. 2006;25:3443–3457.
74. Caruso V, Iacoviello L, Di Castelnuovo A, Storti S, Mariani G, de Gaetano G, Donati MB. Thrombotic complications in childhood acute lymphoblastic leukemia: a meta-analysis of 17 prospective studies comprising 1752 pediatric patients. *Blood*. 2006;108:2216–2222.
75. Young G, Albisetti M, Bonduel M, Brandao L, Chan A, Friedrichs F, Goldenberg NA, Grabowski E, Heller C, Journeyake J, Kenet G, Krümpel A, Kurnik K, Lubetsky A, Male C, Manco-Johnson M, Mathew P, Monagle P, van Ommen H, Simioni P, Svirin P, Tormene D, Nowak-Göttl U. Impact of inherited thrombophilia on venous thromboembolism in children: a systematic review and meta-analysis of observational studies. *Circulation*. 2008;118:1373–1382.
76. Haywood S, Liesner R, Pindora S, Ganesan V. Thrombophilia and first arterial ischaemic stroke: a systematic review. *Arch Dis Child*. 2005;90:402–405.
77. Smolders B, Lemmens R, Thijs V. Lipoprotein (a) and stroke: a meta-analysis of observational studies. *Stroke*. 2007;38:1959–1966.
78. Emerging Risk Factors Collaboration, Erquou S, Kaptoge S, Perry PL, Di Angelantonio E, Thompson A, White IR, Marcovina SM, Collins R, Thompson SG, Danesh J. Lipoprotein (a) concentration and the risk of coronary heart disease, stroke, and nonvascular mortality. *JAMA*. 2009;302:412–423.
79. Sofi F, Marcucci R, Abbate R, Gensini GF, Prisco D. Lipoprotein (a) and venous thrombosis in adults: a meta-analysis. *Am J Med*. 2007;120:728–733.
80. Hancock MA, Boffa MB, Marcovina SM, Nesheim ME, Koschinsky ML. Inhibition of plasminogen activation by lipoprotein(a): critical domains in apolipoprotein(a) and mechanism of inhibition on fibrin and degraded fibrin surfaces. *J Biol Chem*. 2003;287:23260–23269.
81. Lynch JK, Nelson KB. Epidemiology of perinatal stroke. *Curr Opin Pediatr*. 2001;13:499–505.
82. Chalmers EA. Perinatal stroke: risk factors and management. *Br J Haematol*. 2005;130:333–343.
83. Golomb MR, MacGregor DL, Domi T, Armstrong DC, McCrindle BW, Mayank S, deVeber GA. Presumed pre- or perinatal arterial ischemic stroke: risk factors and outcomes. *Ann Neurol*. 2001;50:163–168.
84. Lee J, Croen LA, Backstrand KH, Yoshida CK, Henning LH, Lindan C, Ferriero DM, Fullerton HJ, Barkovich AJ, Wu YW. Maternal and infant characteristics associated with perinatal arterial stroke in the infant. *JAMA*. 2005;293:723–729.
85. Golomb MR. The contribution of prothrombotic disorders to peri- and neonatal ischemic stroke. *Semin Thromb Hemost*. 2003;29:415–424.
86. Curry CJ, Bhullar S, Holmes J, Delozier CD, Roeder ER, Hutchison HT. Risk factors for perinatal arterial stroke: a study of 60 mother-child pairs. *Pediatr Neurol*. 2007;37:99–107.
87. Rees DC. The population genetics of factor V Leiden (Arg 506 Gln). *Br J Haematol*. 1996;95:579–586.
88. Rosendaal FR, Doggen CJ, Zivelin A, Arruda VR, Aiach M, Siscovick DS, Hillarp A, Watzke HH, Bernardi F, Cumming AM, Preston FE, Reitsma PH. Geographic distribution of the 20210 G to A prothrombin variant. *Thromb Haemost*. 1998;79:706–708.
89. Pepe G, Rickards O, Vanegas OC, Brunelli T, Gori AM, Giusti B, Attanasio M, Prisco D, Gensini GF, Abbate R. Prevalence of factor V Leiden mutation in non-European populations. *Thromb Haemost*. 1997;77:329–331.
90. Gürgey A, Mesci L. The prevalence of factor V Leiden (1691 G-A) mutation in Turkey. *Turk J Pediatr*. 1997;39:313–315.
91. Gürgey A, Hıcsönmez G, Parlak H, Balta G, Celiker A. Prothrombin gene 20210 G-A mutation in Turkish patients with thrombosis. *Am J Hematol*. 1998;59:179–180.
92. Ganesan V, Prengler M, Wade A, Kirkham FJ. Clinical and radiological recurrence after childhood arterial ischemic stroke. *Circulation*. 2006;114:2170–2177.

JOURNAL OF THE AMERICAN HEART ASSOCIATION

CLINICAL PERSPECTIVE

Thrombotic events in children, including stroke, are increasingly recognized. Despite the fact that most children with stroke have other underlying risk factors, thrombophilias appear to play a role. Prior studies evaluating the association of thrombophilia in pediatric first-episode stroke are limited by relatively small patient numbers. In this meta-analysis, the impact of the most common thrombophilias on initial arterial ischemic stroke or cerebral sinovenous thrombosis in neonates and children <18 years of age was investigated. Twenty-two cohort studies were included in the final analysis, with a total of 1764 patients with stroke patients and 2867 control subjects. Each of the evaluated thrombophilias was associated with an increased risk of arterial ischemic stroke or cerebral sinovenous thrombosis, with odds ratios ranging from 1.58 (95% confidence interval, 1.20 to 2.08) for patients homozygous for the *MTHFR C677T* genotype to 9.31 (95% confidence interval, 4.81 to 18.02) for patients with protein C deficiency. Patients with combined defects had the highest risk with an odds ratio of 11.86 (95% confidence interval, 5.93 to 23.73). This meta-analysis greatly improves the current understanding of the contribution of thrombophilia to first-episode stroke in children. The analysis is most limited by the fact that the vast majority of patients were white, and some of the tests were performed in only select cohorts, so the results may not be generalizable to all populations. The clinical utility of performing thrombophilia testing in neonates and children with stroke will be determined only after the impact of these thrombophilias on outcome, therapeutic management, and stroke recurrence has been further evaluated in longitudinal studies.