

Diagnostic Studies for Thrombophilia in Women on Hormonal Therapy and During Pregnancy, and in Children

Benjamin R. Brenner, MD; Ulrike Nowak-Göttl, MD; Andrea Kosch, MD; Marilyn Manco-Johnson, MD; Michael Laposata, MD, PhD

• **Objective.**—To review the role of acquired and inherited prothrombotic risk factors that increase the risk of thrombosis in oral contraceptive users, during pregnancy, and in neonates, infants, and children; and to determine by the consensus opinion of recognized experts in the field which risk factors should be determined in which individuals at which time.

Data Sources.—Review of the medical literature and current clinical practice by a panel of experts in the field of thrombophilia.

Data Extraction and Synthesis.—The experts made an extensive review of the published literature and prepared a draft manuscript, which included preliminary recommendations. The draft manuscript was circulated to participants

in the College of American Pathologists Conference XXXVI: Diagnostic Issues in Thrombophilia prior to the conference. The manuscript and recommendations were then presented at the conference for discussion. Recommendations were accepted if a consensus of the 26 experts attending the conference was reached. The results of the discussion were used to revise the manuscript into its final form.

Conclusions.—This report reviews the options for testing for thrombophilic states in women using oral contraceptives, during pregnancy, and in neonates and children. General guidelines for testing in these clinical situations are provided, along with citation of the appropriate supporting literature.

(*Arch Pathol Lab Med*. 2002;126:1296-1303)

This report focuses on diagnostic studies in thrombophilia related to pregnancy and its prevention by oral contraceptives, and in children. The discussion begins with the controversial issues related to thrombophilia testing of women using oral contraceptives. The subject of testing for thrombophilia in patients with pregnancy-associated venous thrombosis and fetal loss is then considered. The article concludes with a discussion of issues related to thrombosis testing in neonates and children.

THROMBOPHILIA IN WOMEN ON HORMONAL THERAPY

Oral Contraceptives and Hormone Replacement Therapy

The risk of venous thromboembolism (VTE) associated with the use of oral contraceptives containing ≥ 50 μ g of ethinylestradiol has been estimated to be increased 4-fold.^{1,2} Reduction of the ethinylestradiol content to 30 to

40 μ g did not result in a decrease of VTE risk.³ Two case-control and 2 cohort studies documented a 3- to 6-fold increase in the risk of VTE in healthy young women.⁴⁻⁷ Women using third-generation oral contraceptives containing the progestins levonorgestrel and gestodene are associated with a 6- to 9-fold increased risk for VTE compared to nonusers. Of 16 studies comparing third-generation oral contraceptives to second-generation contraceptives containing the progestins levonorgestrel and norgestrel, 13 have demonstrated a 1.4- to 4.0-fold increased risk for VTE in users of third-generation oral contraceptives and 3 showed no difference.⁸ The absolute risk for VTE in the first year of third-generation oral contraceptive use is 1 in 1000, which is 10-fold higher than in nonusers.

Proposed pathogenic mechanisms conferring thrombotic risk include an increase in levels of factors VII, VIII, and X; fibrinogen; and prothrombin.⁹ Oral contraceptive use has also resulted in acquired activated protein C (APC) resistance,^{10,11} which is more pronounced in users of third-generation compared to second-generation preparations.^{12,13} The observed decrease in protein S only partially explains the acquired APC resistance in oral contraceptive users. A decrease of factor V⁹ may also result in a reduced anticoagulant effect.¹⁴

The third-generation oral contraceptives (those containing desogestrel) produce greater increases in prothrombin, factor V, and thrombin-activatable fibrinolysis inhibitor, and greater decreases in protein S and factor V than do second-generation preparations containing levonorgestrel.⁹ These changes may underlie the consistent epidemiologic association between third-generation oral contraceptives and VTE.

Accepted for publication May 22, 2002.

From the Hematology Institute, Rambam Medical Center, Haifa, Israel (Dr Brenner); Pediatric Hematology and Oncology, University Children's Hospital, Münster, Germany (Drs Nowak-Göttl and Kosch); University of Colorado Health Sciences Center, Denver (Dr Manco-Johnson); and the Division of Laboratory Medicine, Massachusetts General Hospital, Boston (Dr Laposata).

Presented at the College of American Pathologists Consensus Conference XXXVI: Diagnostic Issues in Thrombophilia, Atlanta, Ga, November 9-11, 2001.

Reprints: Michael Laposata, MD, PhD, Division of Laboratory Medicine, Massachusetts General Hospital, Gray Bldg, Room 235, 32 Fruit St, Boston, MA 02114 (e-mail: mlaposata@partners.org).

miologic findings of increased thrombotic risk in users of third-generation oral contraceptives over second-generation oral contraceptive users. These observations raise the likelihood that the relative risk for thrombosis for those with the factor V Leiden mutation using third-generation oral contraceptives exceeds that in second-generation oral contraceptive users with the factor V Leiden mutation.

Heterozygotes for factor V Leiden using oral contraceptives have a 35-fold increase in the risk for VTE compared to nonusers with normal factor V genotype¹⁵⁻¹⁷ with a further increase in the risk in factor V Leiden homozygotes.¹⁸ Likewise, the prothrombin G20210A mutation confers an increased risk for VTE, including cerebral vein thrombosis.¹⁹ The uncommon deficiencies of antithrombin, protein C, and protein S are also associated with increased thrombotic risk in oral contraceptive users.^{20,21}

As a corollary to the data on oral contraceptives, hormone replacement therapy is associated with a threefold increased risk of VTE. The combination of hormone replacement therapy and APC resistance increases the risk for VTE (odds ratio [OR] 13.3; 95% CI 4.3-41). The prothrombotic effects of the factor V Leiden mutation and hormone replacement therapy are additive rather than multiplicative.²²

The incidence of fatal VTE in oral contraceptive users is 0.7 in 100 000. In heterozygotes for the factor V Leiden gene, it is in the range of 5 in 100 000. Since the absolute risk of VTE is estimated to be 1 in 200 to 1 in 500 in heterozygotes for factor V Leiden, the cost-benefit obtained from wide screening of the general population is questionable.²³ Currently, the cost of testing for factor V Leiden depends on the assays selected and the methods used to calculate the costs. Cost-benefit analysis suggests that screening for factor V Leiden would be cost-effective if the screening costs less than \$9.²⁴ Theoretically, screening tests such as APC-resistance assays, and even possibly a protein C global assay, might be suitable for testing selected populations, such as oral contraceptive users, especially in areas where the prevalence of factor V Leiden is particularly high.

THROMBOPHILIA DURING PREGNANCY

Gestational Hypercoagulability and VTE

Pregnancy is an acquired hypercoagulable state with an increased thrombotic risk, which is also high during the first few months postpartum. The risk for VTE is increased 3-fold to 4-fold during gestation. This situation may result from an increase in procoagulants, such as factor VIII, and a decrease in physiological anticoagulants, such as protein S. Moreover, acquired APC resistance increases and fibrinolytic activity is reduced as the pregnancy progresses and the mother proceeds into the postpartum period. Inherited thrombophilia further increases the risk of VTE in pregnancy.^{25,26} A thrombophilic risk factor can be found in the majority of women who present with gestational VTE. Factor V Leiden is found in 30% to 60%, the prothrombin G20210A mutation in 10% to 20%, and antiphospholipid antibodies in 10% to 20% of women with gestational VTE. In addition, antithrombin III, protein C, and protein S deficiencies are found in another 10% to 20%. The absolute risk of gestational VTE in carriers of factor V Leiden is 1 in 500, in carriers of the prothrombin mutation it is 1 in 200, and in carriers of both mutations it is 1 in 20.²⁵

Gestational Hypercoagulability and Pregnancy Loss

Recurrent fetal loss (RFL) is a common problem. Of women in the reproductive age group, 1% to 2% experience 3 or more losses and 5% experience 2 or more losses. Recurrent fetal loss has a well-established association with certain acquired thrombophilic disorders, such as the antiphospholipid syndrome.²⁷ Several different antiphospholipid antibodies have recently been associated with RFL. Anti-phosphatidylethanolamine immunoglobulin (Ig) M (OR = 6.0; 95% confidence interval [CI] = 2.3-15.7; $P < .001$), anti-β₂-glycoprotein I IgG (OR = 4.4; 95% CI = 1.6-11.7; $P = .004$), anti-annexin V IgG antibodies (OR = 3.2; 95% CI = 1.2-8.1; $P = .02$), and the lupus anticoagulant (OR = 3.0; 95% CI 1.3-6.8; $P = .009$) have been found to be independent retrospective risk factors for unexplained early fetal loss.²⁸ These 4 markers were found in subsequent pregnancies to be associated with a significant risk of fetal loss, despite low-dose aspirin treatment.

A number of recent observations suggest an association between RFL and inherited thrombophilia. Forty-two (22%) of 188 pregnancies in women with protein C, protein S, or antithrombin III deficiency resulted in pregnancy loss, compared to 23 (11%) of 202 pregnancies in control subjects (OR = 2.0; 95% CI = 1.2-3.3).²⁹ In 15 women and 64 pregnancies with dysfibrinogenemia associated with thrombosis, 39% ended by miscarriage and 9% by intrauterine fetal death.³⁰

Three case-control studies have evaluated the prevalence of the factor V Leiden mutation in women with RFL. Despite differences in ethnic white subpopulations and selection criteria for RFL, all 3 studies documented a significantly increased prevalence of the factor V Leiden mutation in women with RFL. Ridker et al³¹ studied women with RFL without an extensive etiological workup, except for ruling out chromosomal abnormalities, and found a 2.3-fold increase in the prevalence of factor V Leiden in women with RFL.

In women with RFL of unknown cause, studies by Grandone et al³² and by Brenner et al³³ have suggested that evaluation for factor V Leiden mutation is highly warranted, as a significant percentage of women with RFL are found to be carriers of the mutation. It should be emphasized, however, that other reports failed to document an association between factor V Leiden mutation and RFL.³⁴

In populations in which homozygosity for factor V Leiden is highly prevalent, a significant association of this state with RFL can also be demonstrated.³³ The risk for RFL is greater in homozygotes than in heterozygotes with the factor V Leiden mutation.³⁵ Female siblings of thrombophilic women with the factor V Leiden mutation are also at an increased risk for RFL.³⁶ Women with thrombophilia have an increased percentage of losses at later stages of gestation.³³ However, APC resistance and the factor V Leiden mutation can also be associated with recurrent first trimester pregnancy loss.³⁷

A potential explanation for the association between RFL and APC resistance is that APC resistance increases progressively throughout normal pregnancy, to some extent in correlation with changes in factor VIII, factor V, and protein S levels.³⁸ Transient elevations in APC resistance can be documented during normal gestations even in women with a normal factor V genotype. Naturally, APC resistance is greater during gestation in women with factor V Leiden mutation. Activated protein C resistance in

Table 1. Acquired Risk Factors for Pediatric Thromboembolism

Perinatal diseases
Birth asphyxia
Respiratory distress syndrome
Infants of diabetic mothers
Neonatal infections
Necrotizing enterocolitis
Dehydration
Congenital nephrotic syndrome
Polycythemia
Medical interventions
Central lines
Surgery
Renal transplantation
Immobilization
Plaster casts
Extracorporeal membrane oxygenation
Acute diseases
Trauma
Sepsis
Dehydration
Acute rheumatic diseases
Nephrotic syndrome
Acute lymphoblastic leukemia
Chronic diseases
Malignancies
Renal diseases
Cardiac malformations
Chronic rheumatic diseases
Drugs
Asparaginase
Prednisone
Coagulation factor concentrates
Heparins
Antifibrinolytic agents
Oral contraceptives

the absence of the factor V Leiden mutation has also been associated with pregnancy loss,³⁹ possibly as a result of other mutations that confer APC resistance.

A meta-analysis of 10 case control studies evaluated the role of the MTHFR T/T genotype and hyperhomocysteinemia in women with pregnancy loss. In 5 of the 6 case-control studies, the MTHFR T/T genotype was not found to be a significant risk factor for recurrent early pregnancy loss.⁴⁰ However, elevated fasting and post-methionine-loading homocysteine levels were found to be associated with recurrent early pregnancy loss (pooled OR = 2.7; 95% CI = 1.4–5.2 and OR = 4.2; 95% CI = 2.0–8.8, respectively).⁴⁰

A recent study by Martinelli et al⁴¹ demonstrated that the factor V Leiden and the prothrombin G20210A mutations are associated with an approximate 3-fold increase in the risk of late fetal loss. Eleven (16%) of 67 women with late fetal loss had either the factor V or the prothrombin mutation versus 13 (6%) of the 232 control subjects. The relative risk of late fetal loss in carriers of the factor V Leiden and prothrombin mutations was 3.2 (95% CI = 1.0–1.9) and 3.3 (95% CI = 1.1–10.3), respectively.

Combinations of thrombophilic states may further increase the risk for RFL. The European Prospective Cohort on Thrombophilia (EPCOT) study documented the highest OR for stillbirth (OR = 14.3; 95% CI = 2.4–86) in women with combined thrombophilic defects.⁴²

Late Gestational Vascular Complications

Activation of blood coagulation and endothelial cell stimulation are recognized events in preeclampsia⁴³; these events are clinically characterized by gestational hypertension, edema, and proteinuria.

Several recent reports suggest an association between APC resistance (with the factor V Leiden mutation) and early onset of severe preeclampsia. In one study, 14 (8.9%) of 158 women with severe preeclampsia were found to be heterozygous for the factor V Leiden mutation, compared with 17 (4.2%) of 403 normotensive gravida controls ($P = .03$).⁴⁴ Similarly, in another study, the factor V Leiden mutation was documented in 19% of women with preeclampsia, compared to 7% of control subjects.⁴⁵

Hyperhomocysteinemia was documented in 26% of women with placental abruption, in 11% of the cases with intrauterine fetal death, and in 38% of women delivering babies whose birth weight was below the fifth percentile, compared with an estimated 2% to 3% in the general control population.⁴⁶ Likewise, hyperhomocysteinemia was documented in 26 (31%) of 84 women with previous placental infarcts or abruption, compared to 4 (9%) of 46 control subjects.⁴⁷ In the Hordaland Homocysteine Study, plasma homocysteine levels were evaluated in 5883 women with 14 492 gestations. The study, which is the largest performed to date, reported an increased risk in these subjects with elevated plasma homocysteine for preeclampsia (OR = 1.33), stillbirth (OR = 2.11), early labor (OR = 1.41), and placental abruption (OR = 3.03).⁴⁸

Seventeen of 27 women with placental abruption had APC resistance, compared to 5 of 29 control subjects (OR = 8.2; 95% CI = 3.6–12.7).³⁷ Factor V Leiden was documented in 8 (30%) of 27 patients, compared to 1 (3%) of 29 control subjects.⁴⁹

The high prevalence of genetic thrombophilias in women with pregnancy-related vascular thromboembolism^{50,51} and the thrombotic changes in the placentae of the majority of women with complications, venous thrombophilia and stillbirth,⁵² suggest that antithrombotic drugs may have a therapeutic benefit to preserve the pregnancy in women with gestational vascular complications.

Data on treatment of women with inherited thrombophilia and pregnancy loss are predominantly uncontrolled and include small series of patients treated mostly with low-molecular-weight heparin. A recent collaborative study demonstrated the safety of using low-molecular-weight heparin during 486 gestations.⁵³ A successful outcome was reported in 83 (89%) of 93 gestations in women with a history of recurrent pregnancy loss and in all 28 gestations in women who experienced preeclampsia during a previous pregnancy.⁵³ In women with thrombophilia, 46 (75%) of 61 pregnancies treated with low-molecular-weight heparin resulted in a live birth, compared to a success rate of only 20% in these same 50 women in prior gestations without antithrombotic therapy.⁵⁴ However, the optimal dosage of low-molecular-weight heparin is unknown and should be optimized by prospective randomized trials, which are currently underway.

THROMBOPHILIA IN NEONATES AND CHILDREN

Description of the Problem

Venous and arterial thrombosis are increasingly being recognized in infancy and childhood. Symptomatic thrombotic manifestations are recorded in 0.07 of 10 000

Table 2. Prevalence Rate of Prothrombotic Risk Factors in White Children*

	Controls	Patients	Odds Ratio (95% CI)
Risk factors in venous thrombosis ^{88,110}			
Factor V Leiden G1691A and A1691A	15/370	83/261	11.0 (6.2–19.7)
Factor V Leiden G1691A	14/370	77/261	10.6 (5.9–19.3)
Factor V Leiden A1691A	1/370	6/261	8.7 (1.0–72.6)
Prothrombin G20210A	4/370	11/261	4.1 (1.3–12.8)
Protein C deficiency	3/370	24/261	12.4 (3.7–41.6)
Protein S deficiency	3/370	15/261	7.5 (2.1–26.0)
Antithrombin deficiency	0/370	9/261	...
Lp(a) > 30 mg/dL	19/370	78/261	7.2 (3.7–14.5)
Risk factors in spontaneous stroke ⁸⁹			
Protein C deficiency	2/296	9/148	9.5 (2–44.6)
Factor V Leiden G1691A	12/296	30/148	6.0 (2.97–12.1)
Prothrombin G20210A	4/296	9/148	4.7 (1.4–15.6)
MTHFR 677TT	31/296	35/148	2.6 (1.5–4.5)
Lp(a) > 30 mg/dL	14/296	39/148	7.2 (3.8–13.8)
Risk factors in neonatal stroke ⁹⁷			
Protein C deficiency	...	6/91	...
Factor V Leiden G1691A	10/182	17/91	3.9 (1.7–9.0)
Prothrombin G20210A	4/182	4/91	2.0 (0.5–8.3)
MTHFR 677TT	20/182	15/91	1.6 (0.8–3.3)
Lp(a) > 30 mg/dL	10/182	20/91	4.8 (2.2–10.9)

* CI indicates confidence interval; Lp(a), lipoprotein (a); and ellipses, insufficient data.

total children, 5.3 of 10 000 children admitted to hospitals, and 2.4 of 1000 newborns admitted to intensive care units. Possibly owing to the lower concentrations of antithrombin, heparin cofactor II, and protein C, along with a reduced fibrinolytic capacity, neonates are at greater risk of thromboembolic complications than older children. The incidence of vascular accidents decreases significantly after the first year of life, with a second peak during puberty and adolescence, again associated with reduced fibrinolytic activity.⁵⁵

Thrombus formation and thrombus growth are the result of local coagulation activation, combined with a disturbance in the balance between coagulation and fibrinolysis, leading to a prothrombotic state. In infancy and childhood, numerous manipulations and conditions (Table 1), such as birth asphyxia, neonatal infections, fetal diabetes, the use of central lines, trauma or surgery, dehydration, malignant diseases, renal diseases, autoimmune diseases, and the use of oral contraceptives in adolescent girls, result in elevated thrombin generation with subsequent thrombus formation.^{56–85}

Various genetic prothrombotic defects, such as the factor V Leiden mutation and the prothrombin G20210A mutation, have been well established as risk factors for thrombotic events,^{86,87} as well as antithrombin, protein C, and protein S deficiency. In addition, metabolic diseases, such as hyperhomocysteinemia and increased concentrations of lipoprotein (a) (Lp[a]), have been recently shown to significantly enhance the risk of thromboembolic arterial and venous thrombosis in pediatric and adult patients.^{86–91} Since the discovery of APC resistance as a highly prevalent hereditary risk factor of thromboembolism, evidence has been accumulating that thrombophilia not infrequently involves multiple risk factors in the same patient.⁹² The combination of genetic prothrombotic risk factors with acquired environmental or clinical conditions greatly increases the risk of thrombosis in children as well as adults.^{90–95}

The most common sites of thrombus formation in neo-

nates are the renal veins, vena cava, and the vessels where occlusion produces a thromboembolic stroke.^{56–61,71,78,96,97} High rates of catheter-related thrombosis in neonates, infants, and children have been reported.^{56–64,67,73} Central venous lines lead to thrombus formation and thrombus growth near the catheter implantation site, especially when prothrombotic risk factors are involved. Other sites of childhood thromboembolism include cerebral vein thrombosis^{73,98,99} and portal and mesenteric vein thrombosis.^{100,101} Arterial vascular occlusions are mainly ischemic strokes (Table 2)^{81,89,96,97} and catheter-related thrombosis in the aorta, the femoral artery, and the subclavian artery.

Purpura fulminans is a life-threatening event characterized by microvascular thrombosis in the dermis followed by perivascular hemorrhage. Hemorrhagic necrosis of the adrenal glands (Waterhouse-Friderichsen syndrome) and renal cortical necrosis may also occur. Clinically, progressive purpuric skin lesions and diffuse oozing from skin puncture sites are observed, often within hours of birth. The lesions are initially red and flat, but quickly become indurated and necrotic and may result in gangrene. The known underlying causes of purpura fulminans in neonates are disseminated intravascular coagulation, for example, in response to bacterial septicemia caused by β -hemolytic streptococcus, *Neisseria meningitidis*, or *Streptococcus pneumoniae* infection; a congenital deficiency of protein C or protein S; and the presence of a homozygous or a heterozygous factor V Leiden mutation.^{95,102–107}

The genetic prothrombotic conditions described, as well as the acquired antiphospholipid antibodies, play a contributory role in the pediatric population with symptomatic venous thrombosis^{107,108} or an ischemic cerebrovascular accident.^{81,98} Table 2 summarizes results from case series and case-control studies^{109–114} in white children with venous thrombosis^{88,110} or ischemic stroke^{81,89,115–119} with respect to individual thrombotic risk factors.

Table 3. Conclusions and Recommendations*

Pregnancy	
Conclusions	
	<ul style="list-style-type: none"> • The risk of VTE during gestation increases 3- to 4-fold. <i>Level 1</i> • Thrombophilia can be identified in the majority of women with gestational VTE.²⁵ <i>Level 1</i> • Thrombophilia is associated with unexplained pregnancy loss (especially in second and third trimester).^{29-37,39-42,52} <i>Level 2</i> • Other gestational vascular complications (preeclampsia, intrauterine growth retardation, placental abruption) are associated with thrombophilia.⁴⁵⁻⁵¹ <i>Level 3</i> • Combined thrombophilic conditions increase the risk for gestational complications.^{33,42,52} <i>Level 2</i> • Patients with prior VTE during pregnancy who have a thrombophilic state are at high risk for recurrence during subsequent pregnancy, may receive antithrombotic prophylaxis during gestation, and should receive antithrombotic prophylaxis in the postpartum period.²⁶ <i>Level 2</i> • Prevention of pregnancy loss in women with thrombophilia by antithrombotic therapy is currently being evaluated in prospective randomized trials.
Recommendations	<ul style="list-style-type: none"> • Women with VTE during pregnancy or in the postpartum period should be evaluated for thrombophilia.¹ <i>Level 1</i> • Women with pregnancy loss that is either recurrent or late in the pregnancy (second and third trimester) should be evaluated for thrombophilia.^{29-37,39-42,52} <i>Level 1</i> • Whether women with other gestational vascular complications should be evaluated for thrombophilia is controversial.⁴⁴⁻⁵¹ <i>Level 3</i> • Testing results for APC resistance and protein S obtained during pregnancy or the postpartum period should be interpreted with caution in view of physiologic changes.
Hormonal therapy	
Recommendation	<ul style="list-style-type: none"> • Testing for thrombophilia is recommended in women who experience VTE as cerebral venous thrombosis during oral contraceptive use or HRT.¹⁵⁻²² <i>Level 1</i>
Pediatrics	
Conclusions	<ul style="list-style-type: none"> • Thrombophilia is commonly found in children (particularly in infants) with VTE or stroke.^{88,89,97,101,108,110,111,118} <i>Level 2</i> • The presence of multiple thrombophilias greatly increases the risk of thrombosis and/or recurrence of thrombosis in infants and children, as it does in adults.⁹⁰ <i>Level 1</i> • The distribution of prothrombotic risk factors varies with respect to the ethnic background and the number of patients/controls investigated.¹²⁹⁻¹³² <i>Level 3</i>
Recommendations	<ul style="list-style-type: none"> • Testing for thrombophilia in children with venous or arterial thrombosis is recommended. The etiology and prevalence of thrombophilia differ when comparing children and adults.^{61,72,73,90} <i>Level 1</i>; ^{81,88,89,97,101,110,115} <i>Level 2</i> • Age-specific reference ranges should be used to interpret the results of thrombophilia testing in the pediatric and neonatal age groups. • Routine evaluation for thrombophilia for asymptomatic children of probands with inherited thrombophilia may be delayed until puberty.¹²⁵ <i>Level 3</i> • Evaluation for thrombophilia of the siblings of probands with early symptomatic thromboembolism is recommended.¹²⁵ <i>Level 3</i>

* VTE indicates venous thromboembolism; HRT, hormone replacement therapy; and APC, activated protein C. Definition of levels of evidence: Level 1, 1 or more well-designed prospective studies; Level 2, retrospective studies or multiple anecdotal studies that reach consensus; and Level 3, isolated anecdotal studies and/or the consensus of expert practitioners.

Diagnostic Testing

Suitable assays for APC resistance,^{120,121} protein C activity, free and total protein S antigen, antithrombin activity, fibrinogen concentration, plasminogen activity, factor VIII, Lp(a),^{122,123} and fasting homocysteine concentration should be investigated along with DNA-based assays, notably the factor V Leiden mutation when indicated by the APC-resistance assay, the prothrombin G20210A mutation, and possibly the MTHFR C677T genotype if the homocysteine concentration is elevated.

Commercially available Lp(a) assays are not yet standardized. However, a working group supported by the National Institutes of Health/National Heart, Lung and Blood Institute has evaluated 22 Lp(a) assays using reference material developed by the International Federation of Clinical Chemistry and Laboratory Medicine in a well-defined reference assay based on the immunodetection of nonrepetitive epitopes within Lp(a).¹²² Overall in the reported trial, the results of various Lp(a) assays correlated well. However, individual assays for the measurement of apolipoprotein (a) were biased by 6% to 31% toward higher or lower Lp(a) values, so that at a given Lp(a) threshold, some assays overestimate and some underestimate the

thrombotic risk. For this reason and because Lp(a) serum levels are determined mainly by a genetically determined size polymorphism of its main protein component, it may be useful to include the analysis of apolipoprotein (a) phenotypes.¹²³

In cases with a strong family history for thrombosis and an affected child, but no positive test results for the more common abnormalities, rare prothrombotic defects (eg, dysfibrinogenemia, hypoplasminogenemia, dysplasminogenemia, heparin cofactor II deficiency, increased levels of histidine-rich glycoprotein, and other genetic mutations and polymorphisms) should be kept in mind. Besides testing for the inherited prothrombotic defects listed, all symptomatic children with thrombosis should be screened for antiphospholipid or anticardiolipin antibodies and the presence of lupus anticoagulants.^{107,108}

Purpura fulminans, a complication of disseminated intravascular coagulation, is unlikely if there is no biochemical evidence of accelerated fibrinolysis. Therefore, in addition to the measurement of a partial thromboplastin time, prothrombin time, and platelet count, screening tests for disseminated intravascular coagulation should include a functional fibrinogen assay, functional antithrombin as-

say, and a D-dimer assay. Protein C, protein S, and the factor V Leiden mutation should be investigated in neonates with disseminated intravascular coagulation complicated by purpura fulminans.¹²⁴

A recent prospective study on recurrent vascular occlusion after a first episode of spontaneous VTE has identified a subgroup of pediatric patients suffering from combined prothrombotic risk factors who are at high risk of recurrent thrombosis. A search for multiple risk factors is justified in selected patient groups.⁹⁰ According to the mendelian theory of inheritance, approximately 50% of siblings of a symptomatic propositus suffering from 2 prothrombotic defects carry a single risk factor, while 25% carry 2 or more gene mutations/polymorphisms. Because an effective prophylactic anticoagulant therapy is available for use in high-risk situations, screening for prothrombotic risk factors should be considered in symptomatic siblings and first-degree family members.¹²⁵

Since DNA-based assays are influenced neither by acute thrombotic onset nor by anticoagulation and thrombolytic therapy, screening can be performed for genetic mutations or polymorphisms immediately at the onset of a thrombotic event. Oral anticoagulant medication influences certain assays and, therefore, it is recommended that fresh plasma samples for coagulation analyses be drawn at least 14 to 30 days after withdrawal of oral anticoagulation therapy. To reduce the effect of an acute thrombotic event on protein C, protein S, and antithrombin, plasma samples should ideally be obtained 3 to 6 months or more after the thrombotic episode. Since Lp(a) levels increase during the first year of life,¹²⁶ attaining a 2-fold value over birth level by approximately 1 year, repeat testing 8 to 12 months after the acute thrombotic onset is mandatory when including Lp(a) in the screening program of white neonates suffering from thromboembolism. Repeat testing is also necessary in pediatric patients with increased anticardiolipin/antiphospholipid IgM or IgG antibodies or lupus anticoagulants to fully assess thrombotic risk.

For all plasma-based assays, a clotting abnormality should be documented as a defect only if the level is outside the limits of its normal range.^{109,127,128} Besides classification based on age-dependent normal reference ranges and confirmation of a suspected prothrombotic defect in a second sample (3–6 months later without oral anticoagulation), the criterion for the diagnosis of a hereditary hemostatic risk factor is the identification of a causative gene mutation.^{86,87} Also, the distribution of prothrombotic risk factors varies with respect to ethnic background.^{129–132}

The conclusions and recommendations for laboratory testing for thrombophilia in women on hormonal therapy, during pregnancy, and in children are presented in Table 3.

The authors thank Susan Griesbach for help in editing this manuscript.

References

1. Stadel V. Oral contraceptives and cardiovascular disease. *N Engl J Med.* 1981;305:612–618.
2. Helmrich SP, Rosenberg L, Kaufman DW, Strom B, Shapiro S. Venous thromboembolism in relation to oral contraceptive use. *Obstet Gynecol.* 1987;69:91–95.
3. Vessey M, Mant D, Smith A, Yeates D. Oral contraceptives and venous thromboembolism: findings in a large prospective study. *BMJ.* 1986;292(6519):526.
4. Venous thromboembolic disease and combined oral contraceptives: results of international multicenter case-control study. World Health Organization Collaborative Study of Cardiovascular Disease and Steroid Hormone Contraception. *Lancet.* 1995;346:1575–1582.
5. Jick H, Jick SS, Gurewich V, Myers MW, Vasilakis C. Risk of idiopathic cardiovascular death and nonfatal venous thromboembolism in women using oral contraceptives with differing progestagen components. *Lancet.* 1995;346:1589–1593.
6. Lewis MA, Heinemann LA, MacRae KD, Bruppacher R, Spitzer WO. The increased risk of venous thromboembolism and the use of third generation progestagens: role of bias in observational research. *Contraception.* 1996;54:5–13.
7. Vandenbroucke JP, Rosing J, Bloemenkamp KWM, et al. Oral contraceptives and the risk of venous thrombosis. *N Engl J Med.* 2001;344:1527–1535.
8. Herings RM, Urquhart J, Leufkens HGM. Venous thromboembolism among new users of different oral contraceptives. *Lancet.* 1999;354:127–128.
9. Middeldorp S, Meijers JCM, van den Ende AE, et al. Effects on coagulation of levonorgestrel- and desogestrel-containing low dose oral contraceptives: a cross-over study. *Thromb Haemost.* 2000;84:4–8.
10. Olivieri O, Friso S, Manzato F, et al. Resistance to activated protein C in healthy women taking oral contraceptives. *Br J Haematol.* 1995;91:465–470.
11. Henkens CMA, Bom VJJ, Seinen AJ, van der Meer J. Sensitivity to activated protein C: influence of oral contraceptives and sex. *Thromb Haemost.* 1995;73:402–404.
12. Rosing J, Tans G, Nicolaes GAF, et al. Oral contraceptives and venous thrombosis: different sensitivities to activated protein C in women using second- and third-generation oral contraceptives. *Br J Haematol.* 1997;97:233–238.
13. Rosing J, Middeldorp S, Curvers J, et al. Low-dose oral contraceptives and acquired resistance to activated protein C: a randomized cross-over study. *Lancet.* 1999;354:2036–2040.
14. Varadi K, Rosing J, Tans G, Pabinger I, Keil B, Schwarz HP. Factor V enhances the cofactor function of protein S in the APC-mediated inactivation of factor VIII: influence of the factor V R506Q mutation. *Thromb Haemost.* 1996;76:208–214.
15. Vandenbroucke JP, Koster T, Briet E, Reitsma PH, Bertina RM, Rosendaal FR. Increased risk of venous thrombosis in oral-contraceptive users who are carriers of factor V Leiden mutation. *Lancet.* 1994;344:1453–1457.
16. Andersen BS, Olsen J, Nielsen GL, et al. Third generation oral contraceptives and heritable thrombophilia as risk factors of non-fatal venous thromboembolism. *Thromb Haemost.* 1998;79:28–31.
17. Hellgren M, Svenson PJ, Dahlback B. Resistance to activated protein C as a basis for venous thromboembolism associated with pregnancy and oral contraceptives. *Am J Obstet Gynecol.* 1995;173:210–213.
18. Rosendaal FR, Koster T, Vandenbroucke JP, Reitsma PH. High risk of thrombosis in patients homozygous for factor V Leiden (activated protein C resistance). *Blood.* 1995;85:1504–1508.
19. Martinelli I, Taioli E, Bucciarelli P, Akhavan S, Mannucci PM. Interaction between the G20210A mutation of the prothrombin gene and oral contraceptive use in deep vein thrombosis. *Arterioscler Thromb Vasc Biol.* 1999;19:700–703.
20. Pabinger I, Kyre PA, Heistinger M, Eichinger S, Wittmann E, Lechner K. The risk of thromboembolism in asymptomatic patients with protein C and protein S deficiency: a prospective cohort study. *Thromb Haemost.* 1994;71:441–445.
21. Girolami A, Simoni P, Girolami B, Zanardi S. The role of drugs, particularly oral contraceptives, in triggering thrombosis in congenital defects of coagulation inhibitors: a study of six patients. *Blood Coagul Fibrinolysis.* 1991;2:673–678.
22. Høibraaten E, Qvigstad E, Andersen TO, Mowinckel MC, Sandset PM. The effects of hormone replacement therapy (HRT) on hemostatic variables in women with previous venous thromboembolism: results from a randomized, double-blind, clinical trial. *Thromb Haemost.* 2001;85:775–781.
23. Vandenbroucke JP, van der Meer FJM, Helmerhorst FM, Rosendaal FR. Factor V Leiden: should we screen oral contraceptive users and pregnant women. *BMJ.* 1996;313:1127–1130.
24. Szucs T, Osterkorn D, Schramm W. Public health economic evaluation of screening for APC resistance (Leiden mutation) in new oral contraceptive users. *Med Klin.* 1996;91:317–319.
25. Gerhardt A, Scharf RE, Beckmann MW, et al. Prothrombin and factor V mutations in women with a history of thrombosis during pregnancy and the puerperium. *N Engl J Med.* 2000;342:374–380.
26. Brill-Edwards P, Ginsberg JS, Gent M, et al. Safety of withholding heparin in pregnant women with a history of venous thromboembolism. *N Engl J Med.* 2000;343:1439–1444.
27. Triplett DA, Harris EN. Antiphospholipid antibodies and reproduction. *Am J Reprod Immunol.* 1989;21:123–131.
28. Gris JC, Quere I, Sanmarco M, et al. Antiphospholipid and antiprotein syndromes in non-thrombotic, non-autoimmune women with unexplained recurrent primary early foetal loss: The Nimes Obstetricians and Haematologists Study—NOHA. *Thromb Haemost.* 2000;84:228–236.
29. Sanson BJ, Friederich PW, Simioni P, et al. The risk of abortion and stillbirth in antithrombin, protein C, and protein S-deficient women. *Thromb Haemost.* 1996;75:387–388.
30. Haverkate F, Samama M. Familial dysfibrinogenemia and thrombophilia: report on a study of the SSC Subcommittee of Fibrinogen. *Thromb Haemost.* 1995;73:151–161.
31. Ridker PM, Miletich JP, Buring JE, et al. Factor V Leiden mutation as a risk factor for recurrent pregnancy loss. *Ann Intern Med.* 1998;128:1000–1003.
32. Grandone E, Margaglione M, Colaizzo D, et al. Factor V Leiden is associated with repeated and recurrent unexplained fetal losses. *Thromb Haemost.* 1997;77:822–824.
33. Brenner B, Sarig G, Weiner Z, Younis J, Blumenfeld Z, Lanir N. Thrombophilic polymorphisms are common in women with fetal loss without apparent cause. *Thromb Haemost.* 1999;82:6–9.

34. Dizon-Townson DS, Kinney S, Branch DW, Ward K. The factor V Leiden mutation is not a common cause of recurrent miscarriage. *J Reprod Immunol*. 1997;34:217-223.

35. Meinardi JR, Middeldorp S, de Kam PJ, et al. Increased risk for fetal loss in carriers of the factor V Leiden mutation. *Ann Intern Med*. 1999;130:736-739.

36. Tormene D, Simioni P, Prandoni P, et al. The risk of fetal loss in family members of probands with factor V Leiden mutation. *Thromb Haemost*. 1999;82:1237-1239.

37. Younis JS, Brenner B, Ohel G, et al. Activated protein C resistance and factor V Leiden mutation can be associated with first- as well as second-trimester recurrent pregnancy loss. *Am J Reprod Immunol*. 2000;43:31-35.

38. Clark P, Brennan J, Conkie JA, McCall D, Greer IA, Walker ID. Activated protein C sensitivity, protein C, protein S and coagulation in normal pregnancy. *Thromb Haemost*. 1998;79:1166-1170.

39. Brenner B, Mandel H, Lanir N, et al. Activated protein C resistance can be associated with recurrent fetal loss. *Br J Haematol*. 1997;97:551-554.

40. Nelen WL, Blom HJ, Steegers EAP, der Heijer M, Eskes TKAB. Hyperhomocysteinemia and recurrent early pregnancy loss: a meta-analysis. *Fertil Steril*. 2000;74:1196-1199.

41. Martinelli I, Taioli E, Cetin I, et al. Mutations in coagulation factors in women with unexplained late fetal loss. *N Engl J Med*. 2000;343:1015-1018.

42. Preston FE, Rosendaal FR, Walker ID, et al. Increased fetal loss in women with heritable thrombophilia. *Lancet*. 1996;348:913-916.

43. Cadroy Y, Grandjean H, Pichon J, Desprats R, Berrebi A, Boneu B. Evaluation of six markers of haemostatic system in normal pregnancy and pregnancy complicated by hypertension or pre-eclampsia. *Br J Obstet Gynaecol*. 1993;100:416-420.

44. Dizon-Townson DS, Nelson LM, Easton K, Ward K. The factor V Leiden mutation may predispose women to severe preeclampsia. *Am J Obstet Gynecol*. 1996;175:902-905.

45. Nagy B, Toth T, Rigo J Jr, Karadi I, Romics L, Papp Z. Detection of factor V Leiden mutation in severe pre-eclamptic Hungarian women. *Clin Genet*. 1998;53:478-481.

46. de Vries JIP, Dekker GA, Huijgens PC, Jakobs C, Blomberg BM, van Geijn HP. Hyperhomocysteinaemia and protein S deficiency in complicated pregnancies. *Br J Obstet Gynaecol*. 1997;104:1248-1254.

47. Goddijn-Wessel TA, Wouters MG, van de Molen EF, et al. Hyperhomocysteinemia: a risk factor for placental abruption or infarction. *Eur J Obstet Gynecol Reprod Biol*. 1996;66:23-29.

48. Vollset SE, Bjørke-Monsen AAL, Irgens LM. Plasma total homocysteine and previous pregnancies: the Hordaland Homocysteine Study [abstract]. Homocysteine Metabolism 2nd International Conference, Nijmegen, The Netherlands, April 26-29, 1998. *Neth J Med*. 1998;52(suppl).

49. Wiener-Magnaghi Z, Ben-Shlomo I, Goldberg Y, Shalev E. Resistance to activated protein C and the Leiden mutation: high prevalence in patients with abruptio placae. *Am J Obstet Gynecol*. 1998;179:1565-1567.

50. Kupferminc MJ, Eldor A, Steinman N, et al. Increased frequency of genetic thrombophilia in women with complications of pregnancy. *N Engl J Med*. 1999;340:9-13.

51. Grandone E, Margaglione M, Colaizzo D, et al. Genetic susceptibility to pregnancy-related venous thromboembolism: roles of factor V Leiden, prothrombin G20210A, and methylenetetrahydrofolate reductase C677T mutations. *Am J Obstet Gynecol*. 1998;179:1324-1328.

52. Gris JC, Quere I, Monpeyroux F, et al. Case-control study of the frequency of thrombophilic disorders in couples with late foetal loss and no thrombotic antecedent: the Nimes Obstetricians and Haematologists Study 5 (NOHA5). *Thromb Haemost*. 1999;81:891-899.

53. Sanson BJ, Lensing AWA, Prins MH, et al. Safety of low-molecular-weight heparin in pregnancy: a systematic review. *Thromb Haemost*. 1999;81:668-672.

54. Brenner B, Hoffman R, Blumenfeld Z, Weiner Z, Younis J. Gestational outcome in thrombophilic women with recurrent pregnancy loss treated by enoxaparin. *Thromb Haemost*. 2000;83:693-697.

55. Andrew M. Developmental hemostasis: relevance to thromboembolic complications in pediatric patients. *Thromb Haemost*. 1995;74:415-425.

56. Andrew M, David M, Adams M, et al. Venous thromboembolic complications (VTE) in children: first analyses of the Canadian registry of VTE. *Blood*. 1994;83:1251-1257.

57. Schmidt B, Andrew M. Neonatal thrombosis: report of a prospective Canadian and international registry. *Pediatrics*. 1995;96:939-943.

58. Nowak-Göttl U, von Kries R, Göbel U. Neonatal symptomatic thromboembolism in Germany: two year survey. *Arch Dis Child Fetal Neonatal Ed*. 1997;76:F163-F167.

59. Massicotte MP, Dix D, Monagle P, Adams M, Andrew M. Central venous catheter related thrombosis in children: analysis of the Canadian Registry of Venous Thromboembolic Complications. *J Pediatr*. 1998;133:770-776.

60. Monagle P, Adams M, Mahoney M, et al. Outcome of pediatric thromboembolic disease: a report from the Canadian childhood thrombophilia registry. *Pediatr Res*. 2000;47:763-766.

61. Nowak-Göttl U, Dübbers A, Kececioglu D, et al. Factor V Leiden, protein C, and lipoprotein (a) in catheter-related thrombosis in childhood: a prospective study. *J Pediatr*. 1997;131:608-612.

62. Vitiello R, McCrindle BW, Nykanen D, Freedom RM, Benson LN. Complications associated with pediatric cardiac catheterization. *J Am Coll Cardiol*. 1998;32:1433-1440.

63. Saloavaara M, Riikinen P, Kekomaki R, Heinonen K. Clinically symptom- atic central venous catheter-related deep venous thrombosis in newborns. *Acta Paediatr*. 1999;88:642-646.

64. Boo NY, Wong NC, Zulkifli SS, Lye MS. Risk factors associated with umbilical vascular catheter-associated thrombosis in newborn infants. *J Pediatr Child Health*. 1999;35:460-465.

65. Uttenreuther-Fischer MM, Vetter B, Hellmann C, et al. Paediatric thromboembolism: the influence of non-genetic factors and the role of activated protein C resistance and protein C deficiency. *Eur J Pediatr*. 1997;156:277-281.

66. Seixas CA, Hessel G, Ribeiro CC, Arruda VR, Annichino-Bizzacchi JM. Factor V Leiden is not common in children with portal vein thrombosis. *Thromb Haemost*. 1997;77:258-261.

67. Schwartz DS, Gettner PA, Konstantino MM, et al. Umbilical venous catheterization and the risk of portal vein thrombosis. *J Pediatr*. 1997;131:760-762.

68. Grandas OH, Klar M, Goldman MH, Filston HC. Deep venous thrombosis in the pediatric trauma population: an unusual event: report of three cases. *Am Surg*. 2000;66:273-276.

69. Kaplan DM, Fliss DM, Peiser Y, Greenberg D, Leiberman A. Internal jugular vein thrombosis in a child due to a "pencil point injury" of the palate. *Int J Pediatr Otorhinolaryngol*. 1998;44:183-187.

70. Eire PF, Vallejo D, Sastre JL, Villaamil R, Rodriguez MA, Garrido M. An unusual complication of appendicitis in childhood. *Eur J Pediatr Surg*. 1999;9:351-352.

71. Sifontes MT, Nuss R, Hunger SP, Wilimas J, Jacobson LJ, Manco-Johnson MJ. The factor V Leiden mutation in children with cancer and thrombosis. *Br J Haematol*. 1997;96:484-489.

72. Mitchell L, Hoogendoorn H, Giles AR, Vegh P, Andrew M. Increased endogenous thrombin generation in children with acute lymphoblastic leukemia: risk of thrombotic complications in L-asparaginase-induced antithrombin III deficiency. *Blood*. 1994;83:386-391.

73. Nowak-Göttl U, Wermes C, Junker R, et al. Prospective evaluation of the thrombotic risk in children with acute lymphoblastic leukemia carrying the MTHFR TT677 genotype, the prothrombin G20210A variant, and further prothrombotic risk factors. *Blood*. 1999;93:1595-1599.

74. Kocak U, Gursel T, Ozturk G, Kantarci S. Thrombosis during all-trans-retinoic acid therapy in a child with acute promyelocytic leukemia and factor VQ 506 mutation. *Pediatr Hematol Oncol*. 2000;17:177-180.

75. Schlegel N. Thromboembolic risks and complications in nephrotic children. *Semin Thromb Hemost*. 1997;23:271-280.

76. Fabri D, Belanger VM, Annichino-Bizzacchi JM, Arruda VR. Inherited risk factors for thrombophilia in children with nephrotic syndrome. *Eur J Pediatr*. 1998;157:939-942.

77. Mocan H, Beattie TJ, Murphy AV. Renal venous thrombosis in infancy: long-term follow-up. *Pediatr Nephrol*. 1991;5:45-49.

78. Bökenkamp A, von Kries R, Nowak-Göttl U, Göbel U, Hoyer PF. Neonatal renal venous thrombosis in Germany between 1992 and 1994: epidemiology, treatment and outcome. *Eur J Pediatr*. 2000;159:44-48.

79. Oh J, Schäfer F, Veldmann A, et al. Heterozygous prothrombin gene mutation: a new risk factor for early renal allograft thrombosis. *Transplantation*. 1999;68:575-578.

80. Heidenreich S, Dercken C, August C, Koch HG, Nowak-Göttl U. High rate of acute rejections in renal allograft recipients with thrombophilic risk factors. *J Am Soc Nephrol*. 1998;9:1309-1313.

81. Sträter R, Vielhaber H, Kassenböhmer R, von Kries R, Göbel U, Nowak-Göttl U. Genetic risk factors of thrombophilia in ischaemic childhood stroke of cardiac origin: a prospective ESPED survey. *Eur J Pediatr*. 1999;158:22-5125.

82. Worth LL, Hoots WK. Development of a subdural vein thrombosis following aggressive factor VII replacement for postnatal intracranial hemorrhage in a homozygous factor VII-deficient infant. *Haemophilia*. 1998;4:757-761.

83. Ettingshausen CE, Saguer IM, Kreuz W. Portal vein thrombosis in a patient with severe hemophilia A and FV G1691A mutation during continuous infusion of F VIII after intramural jejunal bleeding: successful thrombolysis under heparin therapy. *Eur J Pediatr*. 1999;158:S180-S182.

84. Escurial Ettingshausen C, Halimeh S, Kurnik K, et al. Symptomatic onset of severe hemophilia A in childhood is dependent on the presence of prothrombotic risk factors. *Thromb Haemost*. 2001;85:218-220.

85. Ranze O, Ranze P, Magnani HM, Greinacher A. Heparin-induced thrombocytopenia in paediatric patients: a review of the literature and a new case treated with danaparoid sodium. *Eur J Pediatr*. 1999;158:S130-S133.

86. Lane A, Grant PJ. Role of hemostatic gene polymorphisms in venous and arterial thrombotic disease. *Blood*. 2000;95:1517-1532.

87. Seligsohn U, Lubetsky A. Genetic susceptibility to venous thrombosis. *N Engl J Med*. 2001;344:1222-1231.

88. Nowak-Göttl U, Junker R, Hartmeier M, et al. Increased lipoprotein (a) is an important risk factor for venous thromboembolism in childhood. *Circulation*. 1999;100:743-748.

89. Nowak-Göttl U, Sträter R, Heinecke A, et al. Lipoprotein (a) and genetic polymorphisms of clotting factor V, prothrombin and methylenetetrahydrofolate reductase are risk factors of spontaneous ischemic stroke in childhood. *Blood*. 1999;94:3678-3682.

90. Nowak-Göttl U, Junker R, Kreuz W, et al. Risk of recurrent thrombosis in children with combined prothrombotic risk factors. *Blood*. 2001;97:858-862.

91. Depka von M, Nowak-Göttl U, Eisert R, et al. Increased lipoprotein (a) levels as an independent risk factor for venous thromboembolism. *Blood*. 2000;96:3364-3368.

92. Seligsohn U, Zivelin A. Thrombophilia as a multigenetic disorder. *Thromb Haemost*. 1997;78:297-301.

93. Salomon O, Steinberg DM, Zivelin A, et al. Single and combined prothrombotic factors in patients with idiopathic venous thromboembolism: prevalence and risk assessment. *Arterioscler Thromb Vasc Biol*. 1999;19:511-518.

94. Formstone CJ, Hallam PJ, Tuddenham EG, et al. Severe perinatal thrombosis in double and triple heterozygous offspring of a family segregating two independent protein S mutations and a protein C mutation. *Blood*. 1996;87:3731-3737.

95. Brenner B, Zivelin A, Lanir N, Greengard JS, Griffin JH, Seligsohn U. Venous thromboembolism associated with double heterozygosity for R506Q mutation of factor V and for T298M mutation of protein C in a large family of a previously described homozygous protein C-deficient newborn with massive thrombosis. *Blood*. 1996;88:877-880.

96. Debus O, Koch HG, Kurlemann G, et al. Factor V Leiden and genetic defects of thrombophilia in childhood porencephaly. *Arch Dis Child Fetal Neonatal Ed*. 1998;78:F121-F124.

97. Günther G, Junker R, Sträter R, et al. Symptomatic ischemic stroke in full-term neonates: role of acquired and genetic prothrombotic risk factors. *Stroke*. 2000;31:2437-2441.

98. DeVeber G, Monagle P, Chan A, et al. Prothrombotic disorders in infants and children with cerebral thromboembolism. *Arch Neurol*. 1998;55:1539-1543.

99. Vielhaber H, Ehrenforth S, Koch HG, Scharrer I, van der Werf N, Nowak-Göttl U. Cerebral venous thrombosis in infancy and childhood: role of genetic and acquired risk factors of thrombophilia. *Eur J Pediatr*. 1998;157:555-560.

100. Hagstrom JN, Walter J, Bluebond-Langner R, Amatniek JC, Manno CS, High KA. Prevalence of the factor V Leiden mutation in children and neonates with thromboembolic disease. *J Pediatr*. 1998;133:777-781.

101. Heller C, Schobess R, Kurnik K, et al. Abdominal venous thrombosis in neonates and infants: role of prothrombotic risk factors: a multicentre case-control study. *Br J Haematol*. 2000;111:534-539.

102. Seligsohn U, Berger A, Abend M, et al. Homozygous protein C deficiency manifested by massive venous thrombosis in the newborn. *N Engl J Med*. 1984;310:559-562.

103. Marciñiak E, Wilson HD, Marlar RA. Neonatal purpura fulminans: a genetic disorder related to the absence of protein C in blood. *Blood*. 1985;65:15-20.

104. Marlar RA, Montgomery RR, Broekmans AW. Diagnosis and treatment of homozygous protein C deficiency: report of the Working Party on Homozygous Protein C Deficiency of the Subcommittee on Protein C and Protein S, International Committee on Thrombosis and Haemostasis. *J Pediatr*. 1989;114:528-534.

105. Mahasandana C, Suvatte V, Marlar RA, Manco-Johnson MJ, Jacobson LJ, Hathaway WE. Neonatal purpura fulminans associated with homozygous protein S deficiency. *Lancet*. 1990;335:61-62.

106. Pipe SW, Schmaier AH, Nichols WC, et al. Neonatal purpura fulminans in association with factor V R506Q mutation. *J Pediatr*. 1996;128:706-709.

107. Manco-Johnson MJ, Nuss R, Key N, et al. Lupus anticoagulant and protein S deficiency in children with postvaricella purpura fulminans or thrombosis. *J Pediatr*. 1996;128:319-323.

108. Male C, Mitchell L, Julian J, et al. Acquired activated protein C resistance is associated with lupus anticoagulants and thrombotic events in pediatric patients with systemic lupus erythematosus. *Blood*. 2001;97:844-849.

109. Ehrenforth S, Junker R, Koch HG, et al. Multicentre evaluation of combined prothrombotic defects associated with thrombophilia in childhood. *Eur J Pediatr*. 1999;158:S97-S104.

110. Junker R, Koch HG, Auburger K, Münchow N, Ehrenforth S, Nowak-Göttl U. Prothrombin G20210A gene mutation and further prothrombotic risk factors in childhood thrombophilia. *Arterioscler Thromb Vasc Biol*. 1999;19:2568-2572.

111. Bonduel M, Hepner M, Sciuccati G, Torres AF, Pieroni G, Frontrroth JP. Prothrombotic abnormalities in children with venous thromboembolism. *J Pediatr Hematol Oncol*. 2000;22:66-72.

112. Becker S, Heller C, Gropp F, Scharrer I, Kreuz W. Thrombophilic disorders in children with cerebral infarction. *Lancet*. 1998;352:1756-1757.

113. Ganesan V, Kelsey H, Cookson J, Osborn A, Kirkham FJ. Activated protein C resistance in childhood stroke. *Lancet*. 1996;347:260.

114. Riikonen RS, Vahtera EM, Kekomäki RM. Physiological anticoagulants and activated protein C resistance in childhood stroke. *Acta Paediatr*. 1996;85:242-244.

115. Zenz W, Bodo Z, Plotho J, et al. Factor V Leiden and prothrombin gene G20210A variant in children with ischemic stroke. *Thromb Haemost*. 1998;80:763-766.

116. McColl MD, Chalmers EA, Thomas A, et al. Factor V Leiden, prothrombin 20210GA and the MTHFR C677T mutations in childhood stroke. *Thromb Haemost*. 1999;81:690-694.

117. Van Beynum IM, Smeitink JA, den Heijer M, te Poele Pothoff MT, Blom HJ. Hyperhomocysteinemias: a risk for ischemic stroke in children. *Circulation*. 1999;99:2070-2072.

118. Kenet G, Sadetzki S, Murad H, et al. Factor V Leiden and antiphospholipid antibodies are significant risk factors for ischemic stroke in children. *Stroke*. 2000;31:1283-1288.

119. Heller C, Becker S, Scharrer I, Kreuz W. Prothrombotic risk factors in childhood stroke and venous thrombosis. *Eur J Pediatr*. 1999;158:S117-S121.

120. Nowak-Göttl U, Kohlhase B, Vielhaber H, Aschka I, Schneppelein R, Jürgens H. APC-resistance in neonates and infants: adjustment of an aPTT-based method. *Thromb Res*. 1996;81:665-670.

121. Sifontes MT, Nuss R, Hunger SP, Jacobson LJ, Waters J, Manco-Johnson MJ. Correlation between the functional assay for activated protein C resistance and factor V Leiden in the neonate. *Pediatr Res*. 1997;42:776-778.

122. Marcovina SM, Albers JJ, Scanu AM, et al. Use of reference material proposed by the International Federation of Clinical Chemistry and Laboratory Medicine to evaluate analytical methods for the determination of plasma lipoprotein(a). *Clin Chem*. 2000;46:1956-1967.

123. Marcovina SM, Hobbs HH, Albers JJ. Relation between number of apolipoprotein (a) kringle 4 repeats and mobility of isoforms in agarose gel: basis for a standardized isoform nomenclature. *Clin Chem*. 1996;42:436-439.

124. Williams E. Disseminated intravascular coagulation. In: Loscalzo J, Schaefer Al, eds. *Thrombosis and Hemorrhage*. 2nd ed. Baltimore, Md: Williams & Wilkins; 1998:963-985.

125. Kosch A, Junker R, Kurnik K, et al. Prothrombotic risk factors in children with spontaneous venous thrombosis and their asymptomatic parents: a family study. *Thromb Res*. 2000;99:531-537.

126. Wang XL, Wilcken DEL, Dudman NPB. Early expression of the apolipoprotein (a) gene: relationships between infants' and their parents' serum apolipoprotein (a) levels. *Pediatrics*. 1992;89:401-406.

127. Andrew M, Vegh P, Johnston M, Bowker J, Ofosu F, Mitchell L. Maturation of the hemostatic system during childhood. *Blood*. 1992;80:1998-2005.

128. Andrew M. The relevance of developmental hemostasis to hemorrhagic disorders of newborns. *Semin Perinatol*. 1997;21:70-85.

129. Rees DC. The population genetics of factor V Leiden (Arg 506 Gln) [review]. *Br J Haematol*. 1996;95:579-586.

130. Zivelin A, Rosenberg N, Faier S, et al. A single genetic origin for the common prothrombotic G20210A polymorphism in the prothrombin gene. *Blood*. 1998;92:1119-1124.

131. Conroy JM, Trivedi G, Sovd T, Caggana M. The allele frequency of mutations in four genes that confer enhanced susceptibility to venous thromboembolism in an unselected group of New York state newborns. *Thromb Res*. 2000;99:317-324.

132. Helmhold M, Bigge J, Muche R, et al. Contribution of the apo(a) phenotype to plasma Lp(a) concentrations shows considerable ethnic variation. *J Lipid Res*. 1991;32:1919-1928.