

THROMBOPHILIA

S. Ehrenforth · R. Junker · H.-G. Koch · W. Kreuz · N. Münchow · I. Scharrer
U. Nowak-Göttl for the Childhood Thrombophilia Study Group*

Multicentre evaluation of combined prothrombotic defects associated with thrombophilia in childhood

Abstract To evaluate the role of multiple established and potential causes of childhood thrombophilia, 285 children with a history of thrombosis aged neonate to 18 years (first thrombotic onset) were investigated and compared with 185 healthy peers. APC-resistance (FV:Q⁵⁰⁶), protein C, protein S, antithrombin, heparin cofactor II (HCII), histidine-rich glycoprotein (HRGP), and prothrombin (F.II), factor XII (F.XII), plasminogen, homocysteine and lipoprotein (a) (Lp(a)) were investigated. In 59% of patients investigated one thrombotic defect was diagnosed, 19.6% showed two thrombotic risk factors, while in 21.4% of children investigated no risk factor could be identified. Single defects comprised established causes of inherited thrombophilia: FV:Q⁵⁰⁶ (homozygous $n = 10$, heterozygous $n = 69$), protein C (homozygous $n = 1$; heterozygous $n = 31$), heterozygous type I deficiency states of protein S ($n = 7$), antithrombin ($n = 7$) and homocystinuria ($n = 6$); potentially inherited clotting abnormalities which may be associated with thrombophilia: F.XII ($n = 3$), plasminogen ($n = 2$), HCII ($n = 1$), increased HRGP ($n = 4$); new candidate risk factors for thrombophilia: elevated plasma levels of Lp(a) ($n = 26$), F.II ($n = 1$). Heterozygous FV:Q⁵⁰⁶ was found in combination with heterozygous type I deficiency states of protein C ($n = 2$), protein S ($n = 13$), anti-thrombin ($n = 8$) and HCII ($n = 1$), increased Lp(a) ($n = 13$), and once each with elevated levels of F.II, moderate hyperhomocysteinemia, fibrinogen concentrations > 700 mg/dl and increased HRGP. In addition to the association with FV:Q⁵⁰⁶, heterozygous protein C type I deficiency was combined with deficiencies of protein S ($n = 2$), antithrombin ($n = 1$), and increased Lp(a) ($n = 3$). One patient showed protein C deficiency along with familiarly increased von Willebrand factor $> 250\%$. Besides coexistence with FV:Q⁵⁰⁶ and protein C deficiency, protein S deficiency was combined with decreased F.XII and increased Lp(a) in one subject each. Furthermore, we found combinations of antithrombin deficiency/elevated Lp(a), hyperhomocysteinemia/Lp(a), deficiency of HCII/plasm-

S. Ehrenforth (✉)¹ · W. Kreuz · I. Scharrer
Department of Internal Medicine,
University Hospital Frankfurt, Germany

R. Junker · H.-G. Koch · U. Nowak-Göttl
Department of Paediatrics University Hospital,
Münster, Germany

N. Münchow
Institute of Clinical Chemistry and Laboratory Medicine,
University Hospital Hamburg, Germany

Present address:

¹ Department of Internal Medicine I,
Hs 13 A, J.W. Goethe University Hospital,
Theodor-Stern-Kai 7, D-60596 Frankfurt am Main, Germany,
e-mail: ehrenforth@em.uni-frankfurt.de

* Coinvestigators of the Childhood Thrombophilia Study Group were as follows: R. Rossi (Children's hospital Neukölln, Berlin), M. Lenz (University children's hospital, Bonn), CH. Ahring (University children's hospital, Cologne), C. Mauz-Körholz, U. Göbel (University children's hospital, Düsseldorf), S. Becker, D. Schwabe (University children's hospital, Frankfurt), R. Schobess (University children's hospital, Halle), M. Barthels, C. Wermes (University hospital, Hanover), M. Meyer, M. Sauer (University children's hospital, Jena), A. Claviez, H. Plendl, R. Schneppenheim (University children's hospital, Kiel), B. Zieger (La Hoya, USA), H. Rütschle (St. Anna hospital, Ludwigshafen), R. Burghard (Children's hospital, Memmingen), K. Aubberger (University children's hospital, Munich), S. Eber (University children's hospital Göttingen), A. von Eckhardstein, H. Polmann, H. Vielhaber (University children's hospital, Münster), J. Göbel (Red cross children's hospital, Siegen), B. Kohlhase (Children's hospital, St. Augustin).

inogen, and plasminogen deficiency along with increased Lp(a) each in one. Increased prothrombin levels were associated with fibrinogen concentrations >700 mg/dl and with HCII deficiency in one child each. Carrier frequencies of single and combined defects were significantly higher in patients compared with the controls.

Conclusion In conclusion, data of this multicentre evaluation indicate that paediatric thromboembolism should be viewed as a multifactorial disorder.

Key words Childhood venous thrombosis · FV G1691A mutation · Protein C · Protein S · Antithrombin · Lipoprotein (a)

Abbreviations *F* factor · *HC* heparin cofactor · *HRGP* histidine rich glycoprotein · *Lp(a)* lipoprotein (a)

Introduction

Within the past decade, various genetic defects of proteins regulating blood coagulation, particularly those affecting the physiological anticoagulant systems, have been well established as risk factors of cardiovascular disease in adults [7, 11, 14, 18, 25–27, 30, 33, 44, 51, 52]. Besides the high thrombotic risk reported in patients with homozygous factor V (FV):Q⁵⁰⁶ mutation, homozygous protein C deficiency, homozygous protein S deficiency and homozygous homocystinuria due to cystathione- β -synthase (CBS) deficiency, a high risk of early thrombotic onset is observed in patients with heterozygous antithrombin deficiency, heterozygous protein C deficiency of the so-called dominant type, and heterozygous protein S deficiency [22, 34, 35, 46, 48]. In contrast, an intermediate or low risk of developing early thromboembolism is observed in patients with heterozygous FV:Q⁵⁰⁶, heterozygous recessive protein C deficiency and heterozygous defects of the heparin-binding site of the antithrombin molecule, moderate hyperhomocystinemia (elevated fasting homocysteine concentrations), plasminogen deficiency and dysfunctional plasminogen or fibrinogen molecules [9, 15, 17, 45, 47]. Furthermore, the recently described 20210GA variant of the prothrombin gene seems to be a common but probably mild risk factor of arterial and venous thromboembolism [9, 45]. However, there is only scanty and conflicting information about the role in triggering thrombosis of inherited or acquired deficiency of heparin cofactor II (HCII), factor XII (F.XII), or elevated levels of histidine-rich glycoprotein (HRGP), lipoprotein (a), von Willebrand factor antigen or factor VIII:C (F.VIII:C) respectively [6, 16, 19–21, 49].

Since the recent discovery of activated protein C resistance as a highly prevalent hereditary risk factor of venous thromboembolism, evidence has been accumulating that thrombophilia is a multigenetic disorder and that the association of multiple haemostatic defects greatly increases the risk of thrombosis in adults. Although paediatric venous thrombosis is being increasingly viewed as a multifactorial disorder as well [1, 5, 28, 36, 37, 38, 41, 42, 43, 50], information on the role of combined haemostatic defects in childhood thrombosis

is limited [36]. Here, we present multicentric evaluated data on venous and arterial thrombosis in paediatric patients with regard to the frequency and combinations of several haemostatic risk factors of thrombosis in different age groups.

Patients, materials and methods

Subjects

At onset of this multicentre evaluation the following inclusion criteria were defined:

1. Age at first thrombotic onset less than 18 years.
2. Objective confirmation of thromboembolism by standard imaging methods.
3. To prevent results from being affected by an acute reactive process or oral anticoagulation, blood samples were obtained at least 3–6 months after the thrombotic episode and withdrawal of oral anticoagulant medication.
4. Patients found to have an abnormal protein-based laboratory test result were followed up with at least a second blood sample 6 or more weeks after the first examination.

These criteria were fulfilled by 285 out of 433 patients with a history of an objectively confirmed thromboembolic episode between the neonatal period and 18 years of age (median age at onset: 6 years). All patients had been admitted unpreferentially from different geographic areas of Germany in the acute phase for therapy and/or laboratory screening for prothrombotic haemostatic defects.

The thrombotic manifestations reported were: deep vein thrombosis ($n = 83$), central nervous thrombosis ($n = 28$), renal venous thrombosis ($n = 16$), superior caval vein thrombosis ($n = 14$), inferior caval vein thrombosis ($n = 9$), portal vein thrombosis ($n = 7$), right intracardial thrombosis ($n = 5$), splenic vein thrombosis ($n = 2$), mesenteric vein thrombosis ($n = 2$), veno-occlusive disease ($n = 2$), multiple venous thrombosis ($n = 2$), pulmonary embolism ($n = 6$), aortal thrombosis ($n = 1$), mesenteric artery thrombosis ($n = 1$), subclavian artery thrombosis ($n = 1$) and thromboembolic stroke ($n = 106$).

Duplex sonography, venography, computed tomography (CT) and magnetic resonance (MR) imaging were performed to diagnose venous thromboembolism; cerebral CT scanning, MR imaging and MR angiography or transcranial Doppler ultrasonography were performed to confirm the diagnosis of ischaemic stroke.

Besides spontaneous thromboembolism ($n = 117$) early onset of symptomatic vascular occlusion was associated with central lines ($n = 50$), bacterial or viral infection ($n = 23$), malignancy ($n = 21$), adiposity ($n = 10$), systemic lupus erythematosus ($n = 9$), underlying cardiac disease ($n = 11$), peripartal asphyxia

($n = 6$), trauma ($n = 5$), fibromuscular dysplasia ($n = 5$), dehydration ($n = 3$), and mitochondrial disease (MELAS: $n = 2$). In addition, an early intake of oral contraceptives was reported in 15 female adolescents, and nicotine abuse was known in 5 of the children investigated.

The remaining 148 infants and children could not be enrolled in this study because a complete laboratory screening programme was not performed, due mainly to the lack of blood samples for laboratory re-investigation.

In addition, to compare carrier frequencies 185 healthy age-matched children from the same geographic area were investigated as controls.

Laboratory methods

Blood sampling

With informed parental consent, blood samples were collected by peripheral venipuncture into 3.8% trisodium citrate (1 part anti-coagulant: 9 parts blood; Sarstedt® tubes, Nümbrecht, Germany) and placed immediately on melting ice. Platelet poor plasma was prepared by centrifugation at 3000 g for 20 min at 4°C, aliquoted in polystyrene tubes, stored at -70°C and thawed immediately before the assay. For gene analysis we obtained venous blood in EDTA-treated S-Monovettes® (Sarstedt®, Nümbrecht, Germany), from which cells were separated by centrifugation at 3000 g for 15 min. The buffy coat layer was then removed and stored at -70°C until DNA extraction was performed by standard techniques.

Assays of haemostatic factors

The co-ordinating centres Frankfurt and Münster analysed all patient plasma samples by a uniform diagnostic method using the same reagents and instruments. As routine practice Hepzym® (Dade/Baxter Diagnostics, Unterschleißheim, Germany) was added to plasma samples to eliminate the influence of heparin.

Prothrombin time (PT), activated partial thromboplastin time (APTT) and thrombin time were determined in all samples by conventional methods.

According to the classification previously proposed [25], we screened three different groups of conditions predisposing for thrombophilia.

a) Established causes of thrombosis with known inheritance: deficiency and/or dysfunction of antithrombin, protein C, protein S, APC-resistance (FV R506Q)

The response to activated protein C (Chromogenix, Mölndal, Sweden), FV:Q⁵⁰⁶, amidolytic protein C activity (chromogenic substrate: Chromogenix, Mölndal, Sweden), free protein S antigen, total protein S antigen and protein C antigen (Aserachrom, Stago: Asnieres-sur-Seine, France) were measured as described earlier [5, 39, 40]. Antithrombin activity was measured with chromogenic substrate (Chromogenix, Mölndal, Sweden). Partigen plates (radial immunodiffusion) used to determine antithrombin concentrations were purchased from Behringwerke, Marburg, Germany. In addition, crossed immunoelectrophoresis (Behringwerke Marburg, Germany; Dako A-S, Denmark) was performed in patients with antithrombin deficiency.

b) Acquired/Inherited factors known to be associated with an increased risk of thrombosis (precise relative contribution as yet uncertain): hyperhomocysteinemia, elevated levels of Factor VIII:C

F. VIII:C (normal childhood values < 150%) was determined by conventional methods. Fasting plasma homocysteine concentrations were measured by high-performance liquid chromatography

[4] with normal values in infancy and childhood < 10 µmol/l (Koch et al: unpublished data).

c) Potentially inherited clotting abnormalities which may be associated with increased risk of thrombosis (genotype-phenotype relationships as yet unknown): deficiency of plasminogen, heparin cofactor II, Factor XII, elevated histidine-rich glycoprotein, von Willebrand factor, fibrinogen

Heparin cofactor II (HCII) antigen was measured with ELISA technique (Aserachrom, Stago, Asnieres sur Seine, France; HCII-EIA: Diagnostik International, Karlsdorf, Germany) or with the Laurell method (Anti HC II: Behringwerke, Marburg, Germany). Plasminogen activity was measured with chromogenic substrate (Chromogenix, Mölndal, Sweden), while antigen concentrations were determined by radial immunodiffusion (Behringwerke Marburg, Germany). A one-stage clotting activity assay of F.XII was performed on the ACL 300 R (Instrumentation Laboratory, Munich, Germany) or BCT analyser (Behringwerke, Marburg, Germany) using F.XII deficient plasma (Instrumentation Laboratory, Munich, Germany). If F.XII:C was below the normal range, antigen concentrations were measured by immunoelectrophoresis according to Laurell (Anti F.XII: Behringwerke, Marburg, Germany; Enzym Research Laboratory, USA). Histidine-rich glycoprotein (HRGP) was measured with the Laurell method (Anti-HRG: Behringwerke Marburg/Germany). According to the reference boundary of 50–172%, HRGP concentrations above 172% were considered to be abnormally high. Fibrinogen, (Fg: normal childhood values (not age-dependent) 150–400 mg/dl) and von Willebrand factor (vWF:Ag) were determined by conventional methods.

d) New candidate risk factors for thrombosis: elevated lipoprotein (a), prothrombin

As elevated plasma levels of Lp(a) and prothrombin (F.II) were recently detected as possible causes of inherited thrombophilia, both parameters were re-evaluated additionally. Lp(a) (Chromogenix, Mölndal, Sweden) was measured in 90 unselected patients as described earlier [29, 36]. Cut-off values used in this multicentre evaluation were > 30 mg/dl corresponding to < 27 kringle IV repeats. One-stage clotting activity assays of F.II were performed on the automated Coagulation Laboratory (ACL 300 R) (Instrumentation Laboratory, Munich, Germany) or Behring BCT analyser (Behringwerke, Marburg, Germany) using F.II deficient plasma (Instrumentation Laboratory, Munich, Germany).

Definition criteria

Potential thrombophilic states associated with elevated HRGP, fibrinogen, vWF:Ag or F.VIII:C were established only if plasma levels of the protein investigated were clearly above the upper limit of normal in at least two different samples. For all plasma-based assays, diagnosis of a clotting abnormality was established only if the plasma level of a protein was outside the limits of its normal range in at least two different samples.

A heterozygous type I deficiency state was diagnosed when functional plasma activity and immunological antigen concentration of a protein were approximately < 50% of normal of the lower age-related limit [2, 3, 38], and a homozygous state was defined if activity levels and antigen concentrations were approximately < 10% of normal respectively.

On the other hand, a type II deficiency was diagnosed with repeatedly low functional activity levels along with normal antigen concentrations.

The diagnosis of protein S deficiency was based on reduced free protein S antigen levels combined with decreased or normal total protein S antigen concentrations respectively.

Criteria for the hereditary nature of a haemostatic defect were its presence in at least one further first or second degree family member and/or the identification of a causative gene mutation.

For diagnostic purposes a different group of 385 healthy infants and children (elective surgery or bone marrow donors aged 0–18 years: female/male = 200/185) from the same geographic region as the patient group was previously investigated. Table 1 shows the normal values of those clotting factors which require age-adjustment. To avoid a possible overestimation of prevalences for different deficiency states the relatively low cut-off values quoted in Table 1 was chosen to define heterozygous or homozygous states in this childhood population studied.

The present multicentre evaluation was performed in accordance with the ethical standards laid down in a relevant version of the 1964 Declaration of Helsinki and approved by the medical ethics committee at the Westphalian Wilhelms-University, Münster, Germany.

Statistical analysis

Nonparametric statistics (U-test: Mann-Whitney, H-test: Kruskal-Wallis) were performed with the Stat view 4.02 programme. Chisquare (χ^2) test and Fischer's exact test were used for group comparison of carrier frequencies. *P*-values of less than 0.05 were considered to be significant. With respect to the number of different tests applied a correction according to Bonferroni was performed: The critical cut-off χ^2 -value for $p < 0.05$ and two degrees of freedom was 9.8.

Results

The results are shown in Table 2 and in Fig. 1.

In the population studied, 109 out of 285 infants and children presented arterial thromboembolism and 176 out of 285 subjects had suffered from venous vascular occlusion. A predominance of arterial vascular accidents in the youngest age group ($n = 52$) was observed, due mainly to thromboembolic stroke (patent foramen ovale; 24). This pattern changed to 41 arterial observations in children aged 1–9 years, while only 16 older children and adolescents presented with arterial vascular occlusion.

Table 1 Age-dependent normal reference values (median, range) for haemostatic parameters established from 385 healthy infants and children. In addition, cut-off values (heterozygous/homozygous deficiency state) are shown

Parameter Number	Neonate 55	3 Months 50	6 Months 60	1–5 Years 60	6–9 Years 58	10–18 Years 52
F.II %	45 (22–70)	70 (45–105)	80 (50–110)	85 (60–110)	80 (65–108)	83 (65–106)
Cut-off	> 100			> 150		
F.XII %	45 (15–75)	58 (25–98)	70 (35–110)	92 (59–125)	90 (60–130)	90 (60–130)
Cut-off	< 7/ < 2	< 12/ < 2	< 20/ < 5	< 30/ < 5	< 30/ < 5	< 30/ < 5
vWF:Ag %	150 (60–250)	110 (55–200)	105 (50–190)	88 (50–150)	90 (52–153)	95 (55–150)
Cut-off	> 300	> 250	> 150	> 150	> 150	> 150
APCR 1:11Dil	2.6 (2–3.5)	2.8 (2.05–3.5)	2.9 (2–3.6)	3.0 (1.8–3.8)	2.9 (1.8–3.2)	2.8
Cut-off	< 2/ < 1.5	< 2/ < 1.5	< 2/ < 1.5	< 1.7/ < 1.4	< 1.7/ < 1.4	< 1.7/ < 1.4
AT %	52 (30–85)	90 (55–120)	98 (65–126)	101 (85–140)	100 (85–136)	98 (84–139)
Cut-off	< 15/ < 2	< 25/ < 5	< 35/ < 5	< 45/ < 10	< 45/ < 10	< 45/ < 10
HC II %	35 (15–58)	58 (35–70)	80 (45–105)	85 (55–120)	87 (54–120)	95 (60–125)
Cut-off	< 7/ < 2	< 20/ < 5	< 25/ < 5	< 30/ < 10	< 30/ < 10	< 30/ < 10
Protein C Ac. %	35 (14–55)	55 (25–82)	60 (38–95)	75 (45–102)	84 (64–125)	88 (62–128)
Cut-off	< 7/ < 2	< 13/ < 2	< 20/ < 5	< 25/ < 5	< 32/ < 5	< 32/ < 5
Protein C Ag. %	30 (12–50)	50 (22–75)	55 (40–100)	70 (45–98)	80 (55–120)	82 (55–120)
Cut-off	< 7/ < 2	< 13/ < 2	< 20/ < 5	< 25/ < 5	< 30/ < 5	< 30/ < 5
Free Prot.S Ag. %	38 (15–55)	55 (35–92)	77 (45–115)	78 (62–120)	80 (62–130)	85 (60–140)
Cut-off	< 7/ < 2	< 20/ < 5	< 25/ < 5	< 30/ < 10	< 30/ < 10	< 30/ < 10
Total Prot.S Ag. %	35 (14–55)	58 (35–90)	75 (50–110)	85 (60–120)	82 (59–118)	80 (60–115)
Cut-off	< 7/ < 2	< 20/ < 5	< 25/ < 5	< 30/ < 10	< 30/ < 10	< 30/ < 10
Plasminogen %	50 (35–70)	68 (45–95)	87 (65–100)	98 (63–123)	95 (68–120)	90 (70–115)
Cut-off	< 20/ < 5	< 25/ < 5	< 35/ < 10	< 35/ < 10	< 35/ < 10	< 35/ < 10

An established or potential cause of thrombophilia was found in 224 patients, corresponding to 78.6% of children studied ($n = 285$). One risk factor of thrombosis was diagnosed in 168 patients (59%), 56 patients (19.6%) showed two thrombotic defects, while in 61 children (21.4%) no risk factor could be identified so far.

Single thrombotic risk factors

In the majority of cases with single thrombotic defects we diagnosed well established deficiencies with known inheritance, predominantly in the protein C anticoagulant pathway: FV:Q⁵⁰⁶ in a homozygous ($n = 10$, 3.5%) or heterozygous ($n = 69$, 24.2%) form, protein C (heterozygous $n = 31$, 10.8%; homozygous $n = 1$, 0.35%), and heterozygous protein S ($n = 7$, 2.5%). Additionally, heterozygous deficiency of antithrombin ($n = 7$, 2.5%) was diagnosed, and inherited homocystinuria due to CBS deficiency was found in 6 (2.1%) patients. With respect to classification subgroup c (potentially inherited clotting abnormalities which may be associated with increased risk of thrombosis), deficiencies of plasminogen ($n = 2$, 0.7%), HCII ($n = 1$, 0.35%), F.XII ($n = 3$, 1%) and HRGP ($> 172\%$: $n = 4$, 1.4%) were found. All deficiencies were of type I with decreased functional activity and antigen concentration. The remaining defects included the new candidate risk factors for thrombosis: elevated plasma levels of Lp(a) ($n = 26$, 9.1%) and F.II ($n = 1$, 0.4%).

In infants and children with a single thrombotic risk factor (P) the following carrier frequencies were significantly higher compared with the controls (C): heterozygous FV:Q⁵⁰⁶ ($P = 69$; $C = 15$: $\chi^2 = 19.8$), protein C deficiency ($P = 32$; $C = 1$: $\chi^2 = 19.6$) and increased

Table 2 Coexistence of established and potentially inherited conditions predisposing for thrombosis found among 285 symptomatic children (absolute and relative frequencies)

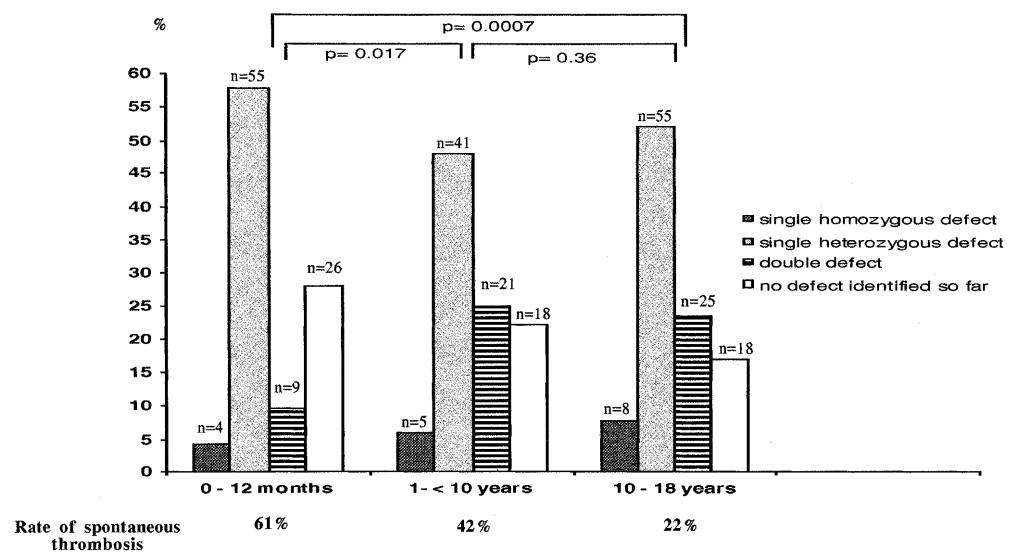
	FV:Q ⁵⁰⁶	Protein C	Protein S	Antithrombin	Lp(a)↑	HCII	F.XII	HRGP↑
FV:Q ⁵⁰⁶	2	13 0.7%	13 4.6%	8 2.8%	13 4.6%	1 0.35%	—	1 0.35%
Protein C	2 0.7%	—	2 0.70%	1 0.35%	3 1.05%	—	—	—
Protein S	13 4.6%	2 0.7%	—	—	1 0.35%	—	1 0.35%	—
Antithrombin	8 2.8%	1 0.35%	—	—	1 0.35%	—	—	—
F.II↑	1 0.35%	—	—	—	—	1 0.35%	—	—
Plasminogen	—	—	—	—	1 0.35%	1 0.35%	—	—
Hyperhomocysteinemia	1 0.35%	—	—	—	1 0.35%	—	—	—

Lp(a) ($P = 26$; $C = 8$: $\chi^2 = 33.7$). However, anti-thrombin deficiency ($P = 7$; $C = 0$: $\chi^2 = 4.6$) was not significantly different when the Bonferroni correction was performed.

No HCII or plasminogen or F.XII deficiency, hyperhomocysteinemia, elevated levels of vWF:Ag, fibrinogen, F.II $> 150\%$ or F.VIII was found in the healthy children investigated.

Combined thrombotic risk factors

Thrombophilic states including more than one established or potential factor predisposing to thrombosis are shown in Table 2. Besides the combined defects shown in Table 2, we found repeatedly increased fibrinogen concentrations > 700 mg/dl associated with FV:Q⁵⁰⁶ or elevated F.II levels, and protein C deficiency along with familial increased vWF:Ag $> 250\%$ in one child each.


Combined defects within the protein C pathway (FV:Q⁵⁰⁶/protein C or protein S: $P = 15$; $C = 0$: $\chi^2 = 10.05$) or FV:Q⁵⁰⁶/Lp(a) ($P = 13$; $C = 0$: $\chi^2 = 12.7$) were

not found in the control population, leading to significant different frequencies between patients and controls. The association between FV:Q⁵⁰⁶ and antithrombin ($P = 8$; $C = 0$: $\chi^2 = 5.2$) was not significantly different when the Bonferroni correction was performed.

Overall frequencies of single and combined thrombotic risk factors

The overall frequencies of established and potential haemostatic risk factors predisposing to thrombosis found in 224 out of 285 patients (168 singly affected, 56 doubly affected) were as follows: FV mutation 42.1% ($n = 120$), protein C deficiency 14.4% ($n = 41$), protein S deficiency 8.4% ($n = 24$), antithrombin deficiency 6% ($n = 17$) and elevated Lp(a) (46 out of 90 children investigated: 51%). The remaining clotting abnormalities, i.e. deficiency states of F.XII, plasminogen and HCII or elevated levels of vWF:Ag, fibrinogen, HRGP and F.II related to the patient population investigated were negligibly low, totalling 8.4%.

Fig. 1 Distribution (absolute number and percentage of investigated children) of double and single thrombophilic risk factors found in children with vascular occlusion at different ages. The prevalence of combined compared to single haemostatic defects differed in the three age groups analysed, with a significantly higher prevalence of combined defects in 1–9-year-olds ($p = 0.017$) and 10–18-year-olds ($p = 0.0007$) respectively when compared with children in the first year of life. As also shown in this figure, the highest rate of spontaneous thrombosis was found in infancy (61% compared with 42% in 1–9-year-olds and 22% in 10–18-year-olds

In all three subjects with elevated prothrombin values $>150\%$ the prothrombin 20210A polymorphism was identified in a heterozygous state (Junker et al: personal communication).

The absolute and relative frequencies of single and combined thrombotic risk factors with respect to patients' age at first thrombosis are shown in Fig. 1. The prevalence of combined compared to single haemostatic defects differed in the three age groups analysed, with a significantly higher prevalence of combined defects in 1–9-year-olds ($p = 0.017$) and 10–18-year-olds ($p = 0.0007$) respectively when compared with children in the first year of life (=infancy). As also shown in Fig. 1, the highest rate of spontaneous thrombosis was found in infancy (61% compared with 42% in 1–9-year-olds and 22% in 10–18-year-olds; $p < 0.0001$). However, besides the higher rate of spontaneous thrombosis observed in infants affected mainly by relatively strong inherited thrombotic risk factors, i.e. deficiency of protein C, protein S or antithrombin, no statistically significant differences were found regarding the relationship between clotting abnormalities diagnosed and site or type of thrombosis.

The female/male ratio changed from male predominance (1:1.26) in the first year of life to female predominance (1:0.5) in children aged 10– <18 years.

Discussion

In recent years, the relations of various hereditary haemostatic abnormalities contributing to the risk of venous thromboembolism – in particular a deficiency of protein C, protein S or antithrombin, activated protein C resistance and hyperhomocysteinaemia – have been well established [7, 11, 14, 18, 22, 25–27, 30, 33–35, 44, 46, 48, 51, 52]. In addition, the recently described polymorphism of 20210GA in the prothrombin gene has been identified as a common but probably mild thrombotic risk factor in adults [9, 32, 45]. Based on several recent trials, mainly in adults but also in paediatric patients, evidence is accumulating that familial thrombophilia may be due to a combination of clotting defects. Although the importance of inherited thrombophilia in children with thromboembolism has recently been established [1, 5, 28, 36, 37, 39, 41, 42, 43, 50], the role of combined haemostatic defects is still unclear. The results obtained from adult trials cannot be extrapolated to children, due mainly to age-dependent physiological differences in haemostasis, the frequency of thrombosis and the risk factors involved [36, 42, 43]. Additionally, in a number of children affected, an acquired risk masks the inherited deficiency [1, 37, 41, 41]. Therefore we performed this multicentre evaluation to assess to what extent single and combined clotting abnormalities influence thrombophilia in paediatric patients.

Among the 285 infants and children investigated, one or more established or potential thrombophilic haemostatic abnormalities were found in 78.6%. The

majority of thrombophilic defects diagnosed in all affected patients were caused by an established hereditary trait (deficiency of protein C, protein S, antithrombin, FV:Q⁵⁰⁶, homocystinuria due to CBS-deficiency) and concerned mainly the protein C pathway. The clotting abnormalities identified in the remaining patients such as deficiency of HCII, F.XII, plasminogen, or elevation of homocysteine, Lp(a), HRGP and vWF:Ag respectively, are viewed as possibly inherited or acquired [25].

Whereas the association between FV:Q⁵⁰⁶ and other well established causes of inherited thrombophilia has been investigated in greater detail, there is only scanty information about associations between FV:Q⁵⁰⁶ and other potential genetic factors predisposing to thrombosis, like the commonly observed increase of Lp(a) [19, 36, 49], which is located on chromosome 6 close to the gene for plasminogen and is closely homologous with plasminogen [31]. However, our data indicate that elevated Lp(a) concentrations, clearly correlated with low molecular weight apo(a) glycoprotein isoforms, classified by the number of kringle IV repeats [23, 29], combined with FV:Q⁵⁰⁶, protein C deficiency or deficiency of protein S and antithrombin led also to an early thrombotic manifestation in paediatric patients. However, since the measurement of Lp(a) could not be re-evaluated in the entire study population presented here, further studies are needed to confirm the potential role of increased Lp(a) in childhood venous and arterial thromboembolism.

Furthermore, the data obtained in the Leiden Thrombophilia Study (LETS) showed that the level of F.VIII:C is an important, independent risk factor for venous thrombosis and that in addition high levels of vWF:Ag were associated with an increased risk of venous thrombosis [20, 32]. In addition, evidence of the potential importance of HRGP in thrombosis and fibrinolysis is provided by recent reports that high levels of HRGP are associated with thrombotic disease and also familial thrombophilia, indicating the possible hereditary nature of this disorder [8, 10, 12, 13]. However, in the population presented we identified familial increased vWF:Ag in only one subject and high levels of HRGP in 5 out of 285 infants and children investigated. Thus, our findings did not indicate a significant, independent effect of elevated vWF:Ag or HRGP on thrombotic risk in childhood, as it seems to be the same for deficiencies of HCII, F.XII and plasminogen diagnosed in 4 cases each. However, further prospective studies are required to evaluate their potential role as so-called "triggering" factors for thrombosis in childhood.

With respect to the parameters investigated, the prevalence of combined thrombotic risk factors reported here was clearly higher compared with results recently reported in adult populations [18, 30, 44]. The high frequency of more than one established or potential cause of thrombophilia found in the paediatric population studied (19.6%) supports the hypothesis

that the presence of combined haemostatic risk factors might contribute to a high incidence of thromboembolic manifestations observed during childhood and adolescence [25, 28, 36, 39, 42, 43, 50]. Although more combined defects occurred in the older age group, a higher rate of spontaneous thrombosis was observed in younger children and infants. This observation might be due to age-dependent physiological differences in haemostasis [1–3] and the prevalence of relatively strong inherited thrombotic risk factors, like deficiencies of protein C, protein S or antithrombin. Both circumstances might lead to an early clinical onset of thrombosis within the first year of life with a lower rate of additional exogenous risk factors required for manifestation. In contrast, the impact of two or more weaker clotting abnormalities is stronger with the presence of additional exogenous risk factors. The latter are increasingly prevalent with increasing age and during puberty, leading to a later onset of thrombosis and a higher prevalence of thromboembolism after triggering events, thus decreasing spontaneous thrombosis.

Although symptomatic patients included in our retrospective study had been admitted unpreferentially from different geographic areas of Germany, the general validity of the results presented might be a point of discussion. We could not exclude the possibility that physicians who admitted symptomatic patients for thrombophilia screening “unpreferentially”, were more likely to investigate patients with spontaneous and unusual or familial thrombosis at a young age. This fact could bias the results presented here towards a higher prevalence of single or combined clotting abnormalities found in children with a first thrombotic onset.

In conclusion, paediatric thrombosis should be viewed as a multifactorial disorder. Whether combinations of two or more thrombophilic risk factors along with early thromboembolism during infancy and childhood are associated with a higher frequency of recurrent thrombotic events, and whether a consequent primary prophylactic anticoagulation in well-known risk situations such as immobilisation, cancer treatment or severe infection might reduce the early thrombotic onset in this high-risk population are issues being dealt with in an ongoing prospective multicentre study.

Acknowledgements The authors thank all technicians from the participating laboratories, in particular Christiane Schettler, Doris Weber and Birga Zwinge, for excellent technical assistance. In addition, we thank Susan Griesbach for editing this manuscript.

References

1. Andrew M (1995) Developmental hemostasis: Relevance to thromboembolic complications in pediatric patients. *Thromb Haemost* 74:415–425
2. Andrew M, Paes B, Milner R, Johnston M, Powers P, Tolleson DM (1987) The development of the human coagulation system in the fullterm infant. *Blood* 70:165–172
3. Andrew M, Vegh P, Johnston M, Bowker J, Ofosu F, Mitchell L (1992) Maturation of the hemostatic system during childhood. *Blood* 80:1998–2005
4. Araki A, Sako Y (1987) Determination of free and total homocysteine in human plasma by high performance liquid chromatography with fluorescence detection. *J Chromatogr* 422:43–52
5. Ashka I, Aumann V, Bergmann F, Budde U, Eberl W, Eckhof-Donovan S, Krey S, Nowak-Göttl U, Schobesb R, Sutor AH, Wendisch J, Schneppenheim R (1996) Prevalence of factor V Leiden in children with thrombembolism. *Eur J Pediatr* 155:1009–1014
6. Bertina RM, Linden van der IK, Engesser L, Muller HP, Brommer EJP (1987) Hereditary heparin Cofactor II deficiency and the risk of development of thrombosis. *Thromb Haemost* 57:196–200
7. Bick RL, Jakway J, Baker WF (1992) Deep vein thrombosis: prevalence of etiologic factors and results of management in 100 consecutive patients. *Sem Thromb Haemost* 1:267–274
8. Castaman G, Ruggeri M, Burei F, Rodeghiero F (1993) High levels of histidine-rich glycoprotein and thrombotic diathesis. Report of two unrelated families. *Thromb Res* 69:297–305
9. Cumming AM, Keeney S, Salden A, Bhavnani M, Shwe KH, Hay CRM (1997) The prothrombin gene G20210A variant: prevalence in a U.K. anticoagulant clinic population. *Br J Haematol* 98:353–355
10. Ehrenforth S, Aygören-Pürsün E, Hach-Wunderle V, Scharrer I (1994) Prevalence of elevated histidine-rich glycoprotein in patients with thrombophilia – a study of 695 patients. *Thromb Haemost* 71:160–161
11. Engesser L, Brommer EJP, Kluft C, Briet E (1989) Elevated plasminogen activator inhibitor (PAI), a cause of thrombophilia? A study in 203 patients with familial or sporadic thrombophilia. *Thromb Haemost* 62:673–680
12. Engesser L, Kluft C, Briet E, Brommer EJP (1987) Familial elevation of plasma histidine-rich glycoprotein in a family with thrombophilia. *Br J Haematol* 67:355–358
13. Falkon L, Gari M, Montserrat I, Muniz E, Borell M, Fontcuberta J (1992) Familial elevation of plasma histidine-rich glycoprotein: a case associated with recurrent venous thrombosis and high PAI-1 levels. *Thromb Res* 66:265–270
14. Gladson CL, Scharrer I, Hach V, Beck KH, Griffin JH (1988) The frequency of type I heterozygous protein S and protein C deficiency in 141 unrelated young patients with venous thrombosis. *Thromb Haemost* 59:18–22
15. Hach-Wunderle V, Scharrer I, Lottenberg R (1988) Congenital deficiency of plasminogen and its relationship to venous thrombosis. *Thromb Haemost* 59:277–280
16. Halbmayer WM, Mannhalter C, Feichtinger C, Rubi K, Fischer M (1992) The prevalence of factor XII deficiency in 103 orally anticoagulated outpatients suffering from venous and/or arterial thromboembolism. *Thromb Haemost* 68:285–290
17. Haverkate F, Samama M. Familial dysfibrinogenemia and thrombophilia (1995) Report on a study of the SSC Subcommittee on Fibrinogen. *Thromb Haemost* 73:151–161
18. Heijboer H, Brandjes DPM, Bülter HR, Sturk A, ten Cate LW (1990) Deficiencies of coagulation-inhibiting and fibrinolytic proteins in outpatients with deep vein thrombosis. *N Engl J Med* 323:1512–1516
19. Jürgens G, Költringer P (1987) Lipoprotein (a) in ischemic cerebrovascular disease: A new approach to the assessment of risk for stroke. *Neurology* 37:513–515
20. Koster T, Blann AD, Briet E, Vandenbroucke JP, Rosendaal FR (1995) Role of clotting factor VIII in effect of von Willebrand factor on occurrence of deep vein thrombosis. *Lancet* 345:152–155
21. Koster T, Rosendaal FR, Briet E, Vandenbroucke JP (1994) John Hagemann's factor and deep vein thrombosis: Leiden Thrombophilia Study. *Br J Haematol* 87:422–424
22. Koster T, Rosendaal FR, de Ronde H, Briet E, Vandenbroucke JP, Bertina RM (1993) Venous thrombosis due to poor

anticoagulant response to activated protein C: Leiden Thrombophilia Study. *Lancet* 342:1503–1506

23. Kraft HG, Lingenhel A, Bader G, Kostner GM, Utermann G (1996) The relative electrophoretic mobility of apo(a) isoforms depends on the gel system: proposal of a nomenclature for apo(a) phenotypes. *Atherosclerosis* 125:53–61
24. Kristensen B, Malm J, Carlberg B, Stegmayr B, Backman C, Fagerlund M, Olsson T (1997) Epidemiology and etiology of ischemic stroke in young adults aged 18 to 44 years in northern Sweden. *Stroke* 28:1702–1709
25. Lane DA, Mannucci PM, Bauer KA, Bertina RM, Bochkov NP, Boulyjenkov V, Chandy M, Dahlbäck B, Ginter EK, Miletich JP, Rosendaal FR, Seligsohn U (1996) Inherited thrombophilia: Part 1. *Thromb Haemost* 76:651–662
26. Lane DA, Mannucci PM, Bauer KA, Bertina RM, Bochkov NP, Boulyjenkov V, Chandy M, Dahlbäck B, Ginter EK, Miletich JP, Rosendaal FR, Seligsohn U (1996) Inherited thrombophilia: Part 2. *Thromb Haemost* 76:824–834
27. Malm J, Laurell M, Nilsson IM, Dahlbäck B (1992) Thromboembolic disease. Critical evaluation of laboratory investigation. *Thromb Haemost* 68:7–13
28. Manco-Johnson MJ, Abshire TC, Jacobson LJ, Marlar RA (1991) Severe neonatal protein C deficiency: prevalence and thrombotic risk. *J Pediatrics* 119:793–798
29. Marcovina SM, Hobbs HH, Albers JJ (1996) Relation between number of apolipoprotein (a) kringle 4 repeats and mobility of isoforms in agarose gel: basis for a standardized isoform nomenclature. *Clin Chem* 42:436–439
30. Mateo J, Oliver A, Borrell M, Sala N, Fontcuberta J, and the EMET group (1997) Laboratory evaluation and clinical characteristics of 2,132 consecutive unselected patients with venous thromboembolism – results of the Spanish multicentric study on thrombophilia (EMET-Study). *Thromb Haemost* 77:444–451
31. McLean JW, Tomlinson JE, Kuang WJ, Eaton DL, Chen EY, Fless GM, Scanu AM, Lawn RM (1987) cDNA sequence of human apolipoprotein (a) is homologous to plasminogen. *Nature* 300:132–137
32. Meer van der FJM, Koster T, Vandebroucke JP, Briet E, Rosendaal FR (1997) The Leiden Thrombophilia study (LETS). *Thromb Haemost* 78:631–635
33. Melissari E, Monte G, Lindo VS, Pemberton KD, Wilson NV, Edmondson R, Das S, Kakkar VV (1992) Congenital thrombophilia among patients with venous thromboembolism. *Blood Coagulation & Fibrinolysis* 3:749–758
34. Miletich JP, Prescott SM, White R, Majerus PW, Bovill EG (1993) Inherited predisposition to thrombosis. *Cell* 72:477–480
35. Mudd SH, Skovby F, Levy HL, Pettigrew KD, Wilcken B, Pyeritz RE, Audria G, Boers GHJ, Homberg IL, Cerone R, Fowler B, Gröbe H, Schmidt H, Schweitzer L (1985) The natural history of homocystinuria due to cystathione- β -synthase deficiency. *Am J Hum Genet* 37:1–31
36. Nowak-Göttl U, Debus O, Findeisen M, Kassenböhmer R, Koch HG, Pollmann H, Postler C, Weber P, Vielhaber H (1997) Lipoprotein (a): its role in childhood thromboembolism. *Pediatrics* (electronic pages) 99:e611
37. Nowak-Göttl U, Dübbers A, Kececioglu D, Koch HG, Kotthoff S, Runde J, Vielhaber H (1997) Factor V Leiden, protein C and lipoprotein (a) in catheter related thrombosis in childhood – a prospective study. *J Pediatr* 131:608–612
38. Nowak-Göttl U, Funk M, Mosch G, Wegerich B, Kornhuber B, Breddin HK (1994) Univariate tolerance regions for fibrinogen, antithrombin III, protein C, protein S, plasminogen and a2-antiplasmin in children using the new automated coagulation laboratory (ACL) method. *Klin Pädiatr* 206:437–439
39. Nowak-Göttl U, Koch HG, Aschka I, Kohlhase B, Vielhaber H, Kurlemann G, Oleszuk-Raschke K, Kehl HG, Jürgens H, Schneppenheim R (1996) Resistance to activated protein C (APCR) in children with venous or arterial thromboembolism. *Brit J Haematol* 92:992–996
40. Nowak-Göttl U, Kohlhase B, Vielhaber H, Aschka I, Schneppenheim R, Jürgens H (1996) APC Resistance in neonates and infants: adjustment of the aPTT-based method. *Thromb Res* 81:665–670
41. Nowak-Göttl U, Kries von R, Göbel U (1997) Neonatal symptomatic thromboembolism in Germany: two year survey. *Arch Dis Child* 76:F163–167
42. Nowak-Göttl U, Sträter R, Dübbers A, Oleszuk-Raschke K, Vielhaber H (1996) Ischaemic stroke in infancy and childhood: role of the Arg 506 to Gln mutation in the factor V gene. *Blood Coagulation & Fibrinolysis* 7:684–688
43. Nuss R, Hys T, Manco-Johnson M (1995) Childhood thrombosis. *Pediatrics* 96:291–294
44. Pabinger I, Brückner S, Kyrle PA, Schneider B, Korninger HC, Niessner H, Lechner K (1992) Hereditary deficiency of antithrombin III, protein C and protein S: prevalence in patients with a history of venous thrombosis and criteria for rational patient screening. *Blood Coagul Fibrinol* 3:547–553
45. Poort SR, Rosendaal FR, Reitsma PH, Bertina RM (1996) A common genetic variation in the 3'-untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increase in venous thrombosis. *Blood* 88:3698–3703
46. Rosendaal FR, Koster T, Vandebroucke JP, Reitsma PH (1995) High risk of thrombosis in patients homozygous for factor V Leiden (Activated protein C resistance). *Blood* 85:1504–1508
47. Sartori MT, Patrassi GM, Theodoridis P, Perin A, Pietrogrande F, Girolami A (1994) Heterozygous type I plasminogen deficiency is associated with an increased risk for thrombosis: a statistical analysis in 20 kindreds. *Blood Coag Fibrinol* 5:889–893
48. Seligsohn U, Zivelin A (1997) Thrombophilia as a multigenetic disorder. *Thromb Haemost* 78(1):297–301
49. Seriolo B, Accardo S, Facciolo D, Bertolini S, Cutolo M (1996) Lipoproteins, anticardiolipin antibodies and thrombotic events in rheumatoid arthritis. *Clin Exp Rheumatol* 14:593–599
50. Sifontes MT, Nuss R, Jacobson LJ, Griffin JH, Manco-Johnson MJ (1996) Thrombosis in otherwise well children with the factor V Leiden mutation. *J Pediatr* 128:324–328
51. Stefano de V, Finazzi G, Mannucci PM (1996) Inherited thrombophilia: Pathogenesis, clinical syndromes and management. *Blood* 87:3531–3544
52. Taberno MD, Tomas JF, Alberca I, Orfao A, Lopez-Borrasca A, Vicente V (1991) Incidence and clinical characteristics of hereditary disorders associated with venous thrombosis. *Am J Hematol* 36:249–254