

Thromboembolism in children

Ulrike Nowak-Göttl, MD,* Andrea Kosch, MD,* Nicole Schlegel, PhD,† Marwa Salem,* and Marilyn Manco-Johnson, MD‡

Acquired and inherited prothrombotic risk factors increase the risk of thrombosis in children. This review is based on "milestone" pediatric reports and new literature data (January 2001- February 2002) on the presence of acquired and inherited prothrombotic risk factors, imaging methods, and treatment modalities in pediatric thromboembolism. After confirming clinically suspected thromboembolism with suitable imaging methods, pediatric patients should be screened for common gene mutations (factor V G1691A, prothrombin G20210A and MTHFR C677T genotypes), rare genetic deficiencies (protein C, protein S, antithrombin, and plasminogen), and new candidates for genetic thrombophilia causing elevated levels of lipoprotein(a), and homocysteine, and probable genetic risk factors (elevations in fibrinogen, factor IX, and factor VIIIC, and decreases in factor XII). Data interpretation is based on age-dependent reference ranges or the identification of causative gene mutations/polymorphisms with respect to individual ethnic backgrounds. Pediatric treatment protocols for acute thromboembolism, including thrombolytic and anticoagulant therapy, are mainly adapted from adult patient protocols. *Curr Opin Hematol* 2002; 9:448-453

© 2002 Lippincott Williams & Wilkins, Inc.

*Department of Pediatric Hematology / Oncology, University of Münster, Germany.
†Service D'Hématologie Biologique, Hôpital Robert Debré, Paris, France, ‡Division of Pediatric Hematology, The Children's Hospital and The University of Colorado Health Sciences, Denver, Colorado, USA.

Correspondence to U. Nowak-Göttl, Univ. Children's Hospital, Pediatric Hematology and Oncology, Albert-Schweitzer-Str. 33, D-48149 Münster, Germany; e-mail: leagottl@uni-muenster.de

Current Opinion in Hematology 2002; 9:448-453

Abbreviations

APC-R	resistance to activated protein C
MRI	magnetic resonance imaging
MTHFR	methylenetetrahydrofolate reductase
PE	pulmonary embolism

ISSN 1065-6251 © 2002 Lippincott Williams & Wilkins, Inc.

Venous and arterial thromboses are rare diseases but are increasingly diagnosed and recognized in infancy and childhood. Symptomatic thrombotic manifestation is recorded in 0.07/10,000 children, 5.3/10,000 admissions of children, and 24/10,000 admissions of newborns to intensive care units in Canada [1]. Within the entire childhood population, possibly because of the lower concentrations of antithrombin, heparin cofactor II, and protein C, reduced fibrinolytic capacity and elevations in hematocrit and ultralarge-molecular-weight multimers of the von Willebrand factor, neonates are at greater risk of thrombosis. The incidence of thromboembolic diseases decreases significantly after the first year of life, with a second peak during puberty and adolescence, again associated with reduced fibrinolytic activity [1]. This review is based on "milestone" pediatric reports and new literature data (January 2001- February 2002) on the presence of acquired and inherited prothrombotic risk factors, imaging methods, and treatment modalities in pediatric thromboembolism.

Clinical and acquired conditions

Thrombus formation and thrombus growth are the results of vascular injury and local coagulation activation combined with a disturbance in the balance between coagulation and fibrinolysis, leading to a prothrombotic state. Numerous conditions, such as peripartal asphyxia, fetal diabetes, neonatal infections, dehydration, the use of central lines, trauma or surgery, malignant diseases, renal diseases, autoimmune diseases, the administration of coagulation factor concentrates, or the intake of oral contraceptives in adolescent girls result in elevated thrombin generation with subsequent thrombus formation in infancy and childhood (Table 1) [2-5,6•,7-14••,15-19,].

Locations of thromboembolic events

Venous thromboembolism

In neonates, the most common manifestations of vascular occlusion are thrombosis of the renal veins and the vena cava, and peripartal thromboembolic stroke (Table 2). In addition, high rates of catheter-related thrombosis in neonates, infants, and children have been reported. Central venous lines lead to thrombus formation and thrombus growth near the catheter implantation site, especially when prothrombotic risk factors are involved. Further sources of childhood thromboembolism reported are cerebral venous thrombosis, intracardiac thrombosis,

DOI: 10.1097/01.MOH.0000023395.93964.0E

Table 1. Clinical risk factors for pediatric thromboembolism

Perinatal Diseases	Birth asphyxia Respiratory distress syndrome Infants of diabetic mothers Neonatal infections Necrotizing enterocolitis Dehydration Congenital nephrotic syndrome Polycythemia Demise of a fetal twin Central lines Operations Transplantation (kidney, heart, bone marrow) Immobilization Plaster casts Extracorporeal membrane oxygenation
Medical Interventions	
Acute Diseases	Trauma Sepsis Dehydration Acute rheumatic diseases Nephrotic syndrome HUS/TTP Acute lymphoblastic leukemia Malignancies Renal diseases Cardiac malformations Chronic rheumatic diseases Sickle cell disease Inflammatory bowel disease <i>E. coli</i> asparaginase Prednisone
Chronic Diseases	
Drugs	Activated coagulation factor concentrates Coagulation factor replacement: excessive levels Heparins Antifibrinolytic agents Oral contraceptives

HUS/TTP, hemolytic uremic syndrome/thrombotic thrombocytopenic purpura.

portal and mesenteric vein thrombosis, vascular occlusions of the deep limb veins, and pulmonary embolism.

Arterial vascular occlusions

Arterial vascular occlusions besides thromboembolic ischemic stroke have been reported, mainly as catheter-related thrombosis in the aorta, femoral artery, mesenteric arteries, and subclavian artery, respectively [2–9].

Table 2. Locations of venous and arterial thrombosis in children

Venous	Deep vein thrombosis of the limbs Pulmonary embolism Renal veins Hepatic veins Caval veins Right intracardiac thrombosis Portal vein Mesenteric veins Cerebral veins Retinal vein Ischaemic stroke Aorta Left intracardiac Renal artery Mesenteric artery Limb artery
Arterial	

Inherited genetic disorders

Various genetic defects, particularly those affecting the physiologic anticoagulant systems, *i.e.*, antithrombin-, protein C-, and protein S-deficiency; resistance to activated protein C (APC-R) mostly because of the G1691A mutation of coagulation factor V, and the prothrombin G20210A gene variant, have been established as risk factors for thrombotic events not only in adults [20] but also in venous [21–27,26•,27,25••] and cerebral thromboembolism [28–39,32•,36,39,38••] in neonates, infants, and children (Table 3). Metabolic diseases such as homozygous homocysteineuria, and moderate hyperhomocysteinemia because of malnutrition or the common homozygous TT genotype of the methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism have been described, as well as increased concentrations of lipoprotein (Lp)(a), fibrinogen, factor VIIIC, and factor IX, or factor XII-deficiency, which have been shown to enhance the risk of thromboembolic arterial and venous thrombosis in pediatric or adult patients. In addition, infants with acute purpura fulminans because of homozygous protein C deficiency or protein S deficiency have been reported. The prothrombotic risk factors reported are not only involved in pediatric venous or arterial thromboembolism but also in intraventricular hemorrhage in preterm infants [40•] and fetal growth restriction [41•], respectively. Interestingly, in contrast to adults, pediatric patients show a similar distribution of prothrombotic risk factors in cohorts of venous and arterial thromboembolism. Since the discovery of APC-R as a highly prevalent hereditary risk factor of thromboembolism, evidence has been accumulating that thrombophilia is a multifactorial disorder [42,43].

Moreover, besides an observed asymptomatic increase in anticardiolipin antibodies in cases of *Varicella zoster* infections [44•], anticardiolipin-/antiphospholipid antibodies play a potential role in the pediatric population with symptomatic venous thrombosis, or ischemic stroke [45••,46•]. Rare disorders of the hemostatic system, *eg*, dysfibrinogenemia, hypo- or dysplasminogenemia, heparin cofactor II deficiency, increased levels of histidine-rich glycoprotein, or further genetic polymorphisms were also found to be associated with the risk of venous thrombosis [20].

Imaging methods

Duplex sonography, venography, computed tomography, and magnetic resonance imaging (MRI) can be used to diagnose venous thrombosis [1–9,47••,48••]. However, venography in combination with Doppler ultrasound is often necessary to confirm suspected thrombosis in the upper venous system [48••]. MRI and MR angiography are recommended to confirm the diagnosis of thromboembolic ischemic stroke. Ventilation/perfusion scan, spiral CT, or MR angiography are suitable methods for diagnosing pulmonary embolism (PE) in children.

Table 3. Inherited prothrombotic risk factors

	Prothrombotic risk factors
Common	Factor V G1691A gene mutation Prothrombin G20210A gene mutation Increased concentrations of apolipoprotein (a) Moderate hyperhomocysteinemia Homozygous C677T polymorphism in the methylenetetrahydrofolate reductase gene
Rare	Protein C deficiency Protein S deficiency Antithrombin deficiency Heparin cofactor II deficiency Dysfibrinogenemia Dys/Hypoplasminogenemia Homozygous homocystinuria
Very rare	Increased levels of factor VIIIC, IX, or fibrinogen Decreased levels of factor XII
Genetic traits, probably contributed to an increased risk in thrombosis:	

Screening for risk factors

Population background

The distribution of prothrombotic risk factors varies in different countries with respect to the ethnic background and the number of patients/controls investigated. Thus, to estimate the individual patient risk in pediatric patients suffering thromboembolism, it is recommended that symptomatic patients be investigated in comparison with age- and gender-matched healthy controls with attention to ethnicity [49–51].

Patients who should be screened

Children with symptomatic thrombosis should be treated by pediatricians with special expertise in coagulation. A recent prospective study has indicated that the subgroup of pediatric patients suffering from multiple combined prothrombotic risk factors is at risk of thrombus recurrence after an initial event of spontaneous venous thromboembolism. Therefore, laboratory testing for multiple risk factors is warranted in symptomatic children [25••]. In addition, the availability of effective prophylactic anticoagulation around high-risk events such as elective surgery supports a discussion of genetic screening in asymptomatic siblings and other first-degree relatives of an affected child [52•].

Laboratory investigation and interpretation of results

To identify prothrombotic risk factors and underlying conditions responsible for thrombosis diseases in children, in addition to a comprehensive personal and family history a laboratory work-up (Table 3) is indicated. Besides genotyping at the onset of the thrombotic disease, a step-wise diagnostic procedure is recommended for plasma-based parameters. In pediatric patients with a reduced protein activity, total protein concentration and free antigen (protein S only) should be determined. To prevent results of protein-based assays from being affected by the acute thrombotic onset, plasma samples should be obtained at least 3 to 6 months after the thrombotic episode. In addition, oral anticoagulant medication also influences protein-based assays. Therefore it is rec-

ommended that fresh plasma samples for coagulation analyses be drawn at least 14 to 30 days after withdrawal of oral anticoagulation. Data interpretation is based on age-dependent reference ranges or the identification of causative gene mutations/polymorphisms with respect to individual ethnic backgrounds [49–54].

Treatment modalities

In pediatric patients with thromboembolism, detailed patient management is seriously hampered by the lack of appropriate clinical trials. In addition, long-term outcome of pediatric thromboembolism has rarely been reported to date [55–57,57•]. Thus, until data are available for the treatment of symptomatic children, pediatric patients with thrombosis are treated according to recommendations based on small-scale studies in children and guidelines adapted from adult patient protocols.

Acute thrombotic therapy

Standard heparin, low-molecular weight heparin [58,59•,60•], heparinoids [61•], and thrombolytic agents [62–69,65•,66•,68••] are used to manage acute thromboembolism in children. Besides specific treatment of acute thromboembolism with anticoagulant or thrombolytic therapy (catheter- and non-catheter-related thrombosis), infants with acute purpura fulminans caused by homozygous protein C deficiency or protein S deficiency should receive fresh frozen plasma or, if available, protein C concentrate [70]. In addition, to prevent pulmonary embolism in selected cases the use of cava filters has been reported [71•]. The latter, however, is difficult and risky in small neonates, infants, and children. As in adults, it must be kept in mind that heparin administration and the use of thrombolytic agents can lead to major bleeding episodes or acute thrombus rupture with subsequent pulmonary embolism or thromboembolic stroke in neonates (patent foramen ovale). In addition, heparin-induced thrombocytopenia type II has not only been reported in adults but also in pediatric patients, creating the potential need to substitute heparin with an alternative anticoagulant emergently [61•]. Whereas the man-

agement of neonates and infants with life-threatening thrombosis possibly leading to organ or limb damage necessitates acute thrombotic treatment, *eg*, thrombolytic therapy, patients during late puberty with venous thrombosis and underlying clinical conditions should be treated according to adult guidelines, which is to the current state of knowledge heparin administration.

Long-term anticoagulation

According to the current state of knowledge only a few authors reported on outcome of pediatric patients with venous thromboembolism. Until prospective randomized data on chronic anticoagulation in pediatric patients are available, pediatric patients should be treated on an individual basis. Pediatric patients with venous thromboembolism found to have a single prothrombotic trait (one heterozygous allele: factor V 1691GA; prothrombin 20210GA; deficiencies of protein C, protein S, or antithrombin; elevated lipoprotein (a)) should receive oral anticoagulation or low-dose heparin, usually administered for 3 to 6 (-12) months after the acute thrombotic onset. Three months anticoagulation is suggested when the thrombus is resolved, the provoking factor is gone, and there is no further underlying prothrombotic tendency, whereas 6 to 12 (or maybe 24) months may be considered for children with ongoing underlying prothrombotic conditions, such as genetic risks, infections, inflammations, or malignancies, respectively. Symptomatic children with severe or multiple genetic thrombotic traits (protein C-, protein S-, antithrombin deficiency) with spontaneous thrombosis, *ie*, without further underlying prothrombotic triggering factors, or with a history of life-threatening recurrent thrombosis, long-term anticoagulant therapy with vitamin K-antagonists [72] is considered on an individual patient basis. In these individuals, secondary preventive anticoagulant therapy, *ie*, low-molecular-weight heparin, may be given in situations known to provoke thrombosis.

For selected pediatric patients under long-term coumadin therapy INR home monitoring is available. In pediatric patients with arterial vascular occlusion or ischemic stroke we suggest the use of low-dose ASA or LMWH [73••].

Acknowledgment

The authors thank Susan Griesbach for help in editing this manuscript.

References and recommended reading

Papers of particular interest, published within the annual period of review, have been highlighted as:

- Of special interest
- Of outstanding interest

- 1 Andrew M: Developmental hemostasis: Relevance to thromboembolic complications in pediatric patients. *Thromb Haemost* 1995, 74:415-425.
- 2 Andrew M, David M, Adams M, et al.: Venous thromboembolic complications

(VTE) in children: first analyses of the Canadian registry of VTE. *Blood* 1994, 83:1251-1257.

- 3 Schmidt B, Andrew M: Neonatal thrombosis: report of a prospective Canadian and international registry. *Pediatrics* 1995, 96:939-943.
- 4 Nowak-Göttl U, von Kries R, Göbel U: Neonatal symptomatic thromboembolism in Germany: two year survey. *Arch Dis Child Fetal Neonatal Ed* 1997, 76: F163-167.

- 5 Massicotte MP, Dix D, Monagle P, et al.: Central venous catheter related thrombosis in children: Analysis of the Canadian Registry of venous thromboembolic complications. *J Pediatr* 1998, 133:770-776.

- 6 Glaser DW, Medeiros D, Rollins N, et al.: Catheter-related thrombosis in children with cancer. *J Pediatr* 2001, 138:255-259.

This study demonstrated with venography that 50% of children who had implantable ports removed during or after treatment of cancer exhibited deep venous thrombosis at the site of catheter placement.

- 7 Molinari AC, Castagnola E, Mazzola C, et al.: Thromboembolic complications related to indwelling central venous catheters in children with oncological/hematological diseases: a retrospective study of 362 catheters. *Supportive Care Cancer* 2001, 9:539-544.

The authors retrospectively identified seven cases of thrombosis in a cohort of 362 implanted venous lines, twice associated with prothrombotic risk factors.

- 8 Monagle P, Adams M, Mahoney M, et al.: Outcome of pediatric thromboembolic disease: a report from the Canadian childhood thrombophilia registry. *Pediatr Res* 2000, 47:763-766.

- 9 Van Ommen CH, Heijboer H, Buller HR, et al.: Venous thromboembolism in childhood: a prospective two-year registry in The Netherlands. *J Pediatr* 2001, 139:676-681.

In their prospective study the authors demonstrated that venous thromboembolism in childhood mostly occurred in hospitalized children, especially sick newborns with central venous catheters. Recurrent thrombosis was observed in 7% of children.

- 10 Mitchell L, Hoogendoorn H, Giles AR, et al.: Increased endogenous thrombin generation in children with acute lymphoblastic leukemia: risk of thrombotic complications in L-Asparaginase-induced antithrombin III deficiency. *Blood* 1994, 83:386-391.

- 11 Nowak-Göttl U, Wermes C, Junker R, et al.: Prospective evaluation of the thrombotic risk in children with acute lymphoblastic leukemia carrying the MTHFR TT677 genotype, the prothrombin G20210A variant, and further prothrombotic risk factors. *Blood* 1999, 93:1595-1599.

- 12 Gurgey A, Aslan D: Outcome of non-catheter-related thrombosis in children: Influence of underlying or coexisting factors. *J Ped Hematol Oncol* 2001, 23:159-164.

The authors demonstrated that 98% of patients investigated during a 3.5-year follow-up period had one or more risk factors with infection in 68% of cases, followed by factor V G1691A or prothrombin G20210A in 32.5% of cases. The death rate reported was 12.5% in the cohort investigated.

- 13 Schlegel N: Thromboembolic risks and complications in nephrotic children. *Semin Thromb Haemost* 1997, 23:271-280.

- 14 Nowak-Göttl U, Kotthoff S, Hagemeyer E, et al.: Interaction of fibrinolysis and prothrombotic risk factors in neonates, infants and children with and without thromboembolism and underlying cardiac disease-A prospective study. *Thromb Res* 2001, 103:93-101.

The authors found that neonates and infants with underlying cardiac disease and a genetically reduced fibrinolytic capacity combined with further prothrombotic risk factors are at high risk of developing early thromboembolism during cardiac catheterisation.

- 15 Kirkham FJ, Hewes DKW, Prengler M, et al.: Nocturnal hypoxaemia and central-nervous-system events in sickle-cell disease. *Lancet* 2001, 357:1656-1659.

This is a very interesting study demonstrating that central nervous system events in children with sickle-cell disease can be predicted by the degree of nocturnal hypoxemia.

- 16 Journey cake JM, Quinn CT, Miller KL, et al.: Catheter-related deep venous thrombosis in children with hemophilia. *Blood* 2001, 1727-1731.

This is a very important study demonstrating by venography a high rate of catheter-related thrombosis in children with hemophilia.

- 17 Ettingshausen CE, Kurnik K, Schobess R, et al.: (2001) Catheter-related thrombosis in children with hemophilia A: Evidence of a multifactorial disease. *Blood* 2002, 99:1499-1500.

In this letter the authors demonstrated that catheter-related thrombosis in hemophilia A patients is mainly associated with prothrombotic risk factors.

- 18 Ettingshausen CE, Halimeh S, Kurnik K, et al.: Symptomatic onset of severe hemophilia A in childhood is dependent on the presence of prothrombotic risk factors. *Thromb Haemost* 2001, 85:218-220.

In this study the modification of the hemophilia phenotype by the coinheritance with prothrombotic risk factors is shown.

19 Schmugge M, Risch L, Huber AR, et al.: Heparin-induced thrombocytopenia-associated thrombosis in pediatric intensive care patients. *Pediatrics* 109, U69-U72.

Retrospectively it is demonstrated that heparin-induced thrombocytopenia with subsequent thrombosis occurred in 2.3% of pediatric patients exposed to heparin for more than 5 days at intensive care units. Although the incidence is similar to that of adults, the outcome is reported to be less severe.

20 Lane A, Grant PJ: Role of hemostatic gene polymorphisms in venous and arterial thrombotic disease. *Blood* 2000, 95:1517-1526.

21 Hagstrom JN, Walter J, Bluebond-Langner R, et al.: Prevalence of the factor V Leiden mutation in children and neonates with thromboembolic disease. *J Pediatr* 1998, 133:777-781.

22 Junker R, Koch HG, Auberger K, et al.: Prothrombin G20210A gene mutation and further prothrombotic risk factors in childhood thrombophilia. *Arterioscler Thromb Vasc Biol* 1999, 19:2568-2572.

23 Bonduel M, Hepner M, Sciuccati G, et al.: Prothrombotic abnormalities in children with venous thromboembolism. *J Pediatr Hematol Oncol* 2000, 22:66-72.

24 Nowak-Göttl U, Junker R, Hartmeier M, et al.: Increased lipoprotein (a) is an important risk factor for venous thromboembolism in childhood. *Circulation* 1999, 100:743-748.

25 Nowak-Göttl U, Junker R, Kreuz W, et al.: Risk of recurrent thrombosis in children with combined prothrombotic risk factors. *Blood* 2001, 97:858-862.

This is a prospective study demonstrating that children with spontaneous thrombosis carrying more than one prothrombotic risk factor suffered a significantly higher recurrence rate than children with one thrombophilia or no risk factor.

26 Kuhle S, Lane DA, Jochmann K, et al.: Homozygous antithrombin deficiency • type II (99 Leu to Phe mutation) and childhood thromboembolism. *Thromb Haemost* 2001, 86:1007-1011.

It is demonstrated in this report that antithrombin type II deficiency is associated with severe thrombotic events in childhood.

27 Kosch A, Junker R, Wermes C, et al.: Recurrent pulmonary embolism in a • 13-year-old male homozygous for the prothrombin G20210A mutation combined with protein S deficiency and increased lipoprotein (a). *Thromb Res* 2002, 105:49-53.

In this case report the impact of the homozygous prothrombin G20210A mutation is discussed.

28 Nowak-Göttl U, Sträter R, Heinecke A, et al.: Lipoprotein (a) and genetic polymorphisms of clotting factor V, prothrombin and methylenetetrahydrofolate reductase are risk factors of ischemic stroke in childhood. *Blood* 1999, 94:3678-3682.

29 Zenz W, Bodo Z, Plotho J, et al.: Factor V Leiden and prothrombin gene G20210A variant in children with ischemic stroke. *Thromb Haemost* 1998, 80:763-766.

30 McColl MD, Chalmers EA, Thomas A, et al.: Factor V Leiden, prothrombin 20210GA and the MTHFR C677T mutations in childhood stroke. *Thromb Haemost* 1999, 81:690-694.

31 Van Beynum IM, Smeitink JA, den Heijer M, et al.: Hyperhomocysteinemia: a risk for ischemic stroke in children. *Circulation* 1999, 99:2070-2072.

32 Prengler M, Sturt N, Krywawych S, et al.: Homozygous thermolabile variant of the methylenetetrahydrofolate reductase gene: A potential risk factor for hyperhomocysteinaemia, CVD, and stroke in childhood. *Develop Med Child Neurol* 2001, 43:220-225.

The role of the MTHFR C677T variant in childhood stroke is underscored.

33 Kenet G, Sadetzki S, Murad H, et al.: Factor V Leiden and antiphospholipid antibodies are significant risk factors for ischemic stroke in children. *Stroke* 2000, 31:1283-1288.

34 Heller C, Becker S, Scharrer I, et al.: Prothrombotic risk factors in childhood stroke and venous thrombosis. *Eur J Pediatr* 1999, 158:S117-121.

35 Günther G, Junker R, Sträter R, et al.: Symptomatic ischemic stroke in full-term neonates: Role of acquired and genetic prothrombotic risk factors. *Stroke* 2000, 31:2437-2441.

36 Bonduel M, Hepner M, Sciuccati G, et al.: Prothrombotic disorders in children • with moyamoya syndrome. *Stroke* 2001, 32:1786-1792.

The interaction of moyamoya syndrome and prothrombotic risk factors is discussed.

37 Vielhaber H, Ehrenforth S, Koch HG, et al.: Cerebral venous thrombosis in infancy and childhood: role of genetic and acquired risk factors of thrombophilia. *Eur J Pediatr* 1998, 157:555-560.

38 DeVeber G, Andrew M, Adams C, et al.: Cerebral sinovenous thrombosis in children. *N Engl J Med* 345, 417-423.

This interesting paper reports on incidence, treatment, and underlying diseases in children with cerebral thromboembolism.

39 Carvalho KS, Bodensteiner JB, Conolly PJ, et al.: Cerebral venous thrombosis in children. *J Child Neurol* 2001, 16:574-580.

In this study risk factors, radiologic features, and neurologic outcome were reported in 31 children with cerebral venous thrombosis.

40 Petäjä J, Hiltunen L, Fellman V: Increased risk of intraventricular hemorrhage in preterm infants with thrombophilia. *Ped Res* 2001, 49:643-646.

The presence of prothrombotic risk factors associated with intracerebral bleeding is discussed.

41 Von Kries R, Junker R, Oberle D, et al.: Fetal growth restriction in children with prothrombotic risk factors. *Thromb Haemost* 2001, 86:1012-1016.

The association of fetal thrombophilia and intrauterine growth retardation is shown.

42 Seligsohn U, Zivelin A: Thrombophilia as a multigenetic disorder. *Thromb Haemost* 1997, 78:297-301.

43 Brenner B, Zivelin A, Lanir N, et al.: Venous thromboembolism associated with double heterozygosity for R506Q mutation of factor V and for T298M mutation of protein C in a large family of a previously described homozygous protein C deficient newborn with massive thrombosis. *Blood* 1996, 88:877-880.

44 Josephson C, Nuss R, Jacobson L, et al.: The varicella-autoantibody syndrome. *Red Res* 2001, 50:345-352.

This study reports a high rate of asymptomatic *Varicella*-associated autoantibodies in children.

45 Male C, Mitchell L, Julian J, et al.: Acquired activated protein C resistance is associated with lupus anticoagulants and thrombotic events in pediatric patients with systemic lupus erythematosus. *Blood* 2001;97:844-849.

This survey demonstrated the clinical importance of acquired protein C resistance in combination with lupus anticoagulants but not anticardiolipin antibodies in children with lupus erythematosus also suffering from thrombotic events.

46 Yachha SK, Aggarwal R, Sharma BC, et al.: Functional protein C and anti-cardiolipin antibody in children with portal vein thrombosis. *Indian J Gastroenterol* 2001, 20:47-49.

The authors report on a high rate of protein C deficiency or elevated levels of anticardiolipin antibodies in children with idiopathic portal vein thrombosis.

47 Roy M, Turner-Gomes S, Gill G, et al.: Accuracy of Doppler echocardiography for the diagnosis of thrombosis associated with umbilical venous catheters. *J Pediatr* 2002, 140:131-134.

This is a very important study comparing the diagnostic accuracy of Doppler echocardiography and contrast venography in infants with asymptomatic catheter-related thrombosis. Only contrast venography accurately diagnosed catheter-related thrombosis in the newborn infants investigated.

48 Male C, Chait P, Ginsberg JS, et al.: Comparison of venography and ultrasound for the diagnosis of asymptomatic deep vein thrombosis in the upper body in children: Results of the PARKAA study. *Thromb Haemost* 2002, 87:593-598.

In this interesting study evidence is given that a combination of both venography and Doppler ultrasound is required for screening for deep venous thrombosis in the upper venous system.

49 Rees DC: The population genetics of factor V Leiden (Arg 506 Gln). *Review. Br J Haematol* 1996, 95:579-586.

50 Zivelin A, Rosenberg N, Faier S, et al.: A single genetic origin for the common prothrombotic G20210A polymorphism in the prothrombin gene. *Blood* 1998, 92:1119-1124.

51 Conroy JM, Trivedi G, Sovd T, et al.: The allele frequency of mutations in four genes that confer enhanced susceptibility to venous thromboembolism in an unselected group of New York state newborns. *Thromb Res* 2000, 99:317-324.

52 Kosch A, Junker R, Kurnik K, et al.: Prothrombotic risk factors in children with spontaneous venous thrombosis and their asymptomatic parents: a family study. *Thromb Res* 2000, 99:531-537.

53 Andrew M, Vegh P, Johnston M, et al.: Maturation of the hemostatic system during childhood. *Blood* 1992, 80:1998-2005.

54 Andrew M: The relevance of developmental hemostasis to hemorrhagic disorders of newborns. *Sem Perinatol* 1997, 21:70-85.

55 Mocan H, Beattie TJ, Murphy AV: Renal venous thrombosis in infancy: long-term follow-up. *Pediatr Nephrol* 1991, 5:45-49.

56 Häusler M, Duque D, Merz U, et al.: The clinical outcome after inferior vena cava thrombosis in early infancy. *Eur J Pediatr* 1999, 158:416-20.

57 Häusler M, Hübner D, Delhaas T, et al.: Long term complications of inferior vena cava thrombosis. *Arch Dis Child* 2001, 85:228-233.

Persistent venous disease and severe long-term complications are reported in infants and children suffering from extensive inferior vena cava thrombosis (median follow-up, 10 years).

58 Massicotte P, Adams M, Marzinotto V, et al.: Low-molecular-weight heparin in pediatric patients with thrombotic disease: a dose finding study. *J Pediatr* 1996, 128:313–318.

59 Elhasid R, Lanir N, Sharon R, et al.: Prophylactic therapy with enoxaparin during L-asparaginase treatment in children with acute lymphoblastic leukemia. *Blood Coagul Fibrinol* 2001, 12:367–370.

This interesting report provided pilot data for future trials of the use of LMWH during ALL therapy for prevention of asparaginase-associated thrombotic events: None of the 41 children treated with enoxaparin suffered symptomatic thrombosis during the course of asparaginase administration.

60 Hofmann S, Knoefler R, Lorenz N, et al.: Clinical experience with low-molecular weight heparins in pediatric patients. *Thromb Res* 2001, 345–353. The results of nadroparin or enoxaparin administration in a series of pediatric patients with primary and secondary thromboprophylaxis are shown and discussed.

61 Zöhrer B, Zenz W, Rettenbacher A, et al.: Danaparoid sodium (Orgaran®) in four children with heparin-induced thrombocytopenia type II. *Acta Paediatr* 2001, 90:765–771.

The administration of danaparoid sodium in heparin-induced thrombocytopenia type II in children is discussed as useful therapeutic regimen.

62 Kirk CR, Qureshi SA: Streptokinase in the management of arterial thrombosis in infancy. *Int J Cardiol* 1989;25:15–20.

63 Farnoux C, Camard O, Pinquier D, et al.: Recombinant tissue-type plasminogen activator therapy of thrombosis in 16 neonates. *J Pediatr* 1998, 133:137–140.

64 Weiner GM, Castle VP, DiPietro MA, et al.: Successful treatment of neonatal arterial thromboses with recombinant tissue plasminogen activator. *J Pediatr* 1998, 133:133–136.

65 Jacobs BR, Haygood M, Hingl J: Recombinant tissue plasminogen activator in the treatment of central venous catheter occlusion in children. *J Pediatr* 2001, 139:593–596.

The authors demonstrated that tissue type plasminogen activator is effective in restoring patency of occluded central venous lines.

66 Choi M, Massicotte MP: The use of alteplase to restore patency of central venous lines in pediatric patients: A cohort study. *J Pediatr* 2001, 139:152–156. See [65].

67 Manco-Johnson MJ, Nuss R, Hays T, et al.: Combined thrombolytic and anti-coagulant therapy for venous thrombosis in children. *J Pediatr* 2000, 136:446–453.

68 Gupta AA, Leaker M, Andrew M, et al.: Safety and outcomes of thrombolysis with tissue plasminogen activator for treatment of intravascular thrombosis in children. *J Pediatr* 2001, 682–688.

The use of tissue plasminogen activator at an average of 0.5 mg/kg/h for a median duration of 6 hours is retrospectively described in a cohort of eighty consecutively treated children with thrombosis: 65% of children showed complete patency, partial patency was observed in 20%, whereas 15% did not show any effect. Major complications occurred in 40% of patients. The authors conclude that tPA in children can be effective but is associated with a low margin of safety and unknown risk-benefit ratio in the dosage and duration administered.

69 Dix D, Andrew M, Marzinotto V, et al.: The use of low molecular weight heparin in pediatric patients: a prospective cohort study. *J Pediatr* 2000, 136:439–445.

70 Marlar RA, Montgomery RR, Broekmans AW: Diagnosis and treatment of homozygous protein C-deficiency. Report of the Working Party on Homozygous Protein C Deficiency of the Subcommittee on Protein C and Protein S. International Committee on Thromb Haemost. *J Pediatr* 1989, 114:528–534.

71 Cahn MD, Rohrer MJ, Martella MB, et al.: Long-term follow-up of Greenfield inferior vena cava filter placement in children. *J Vasc Surg* 2001, 34:820–824.

The successful use of vena cava filters in children is reported.

72 Streif W, Andrew M, Marzinotto V, et al.: Analysis of Warfarin therapy in pediatric patients: A prospective cohort study of 319 patients. *Blood* 1999, 94:3007–3014.

73 Straeter R, Kurnik K, Heller C, et al.: Aspirin versus low-dose low-molecular-weight heparin: Antithrombotic therapy in pediatric ischemic stroke patients: A prospective follow-up study. *Stroke* 2001, 32:2554–2558.

Children with ischemic stroke received secondary anticoagulation with either aspirin or low-dose low-molecular-weight heparin. The re-stroke rate reported was 9.3% but was no different in children treated with aspirin or heparin. No bleeding complications were observed.